
J. Intell. Comput. Health Inform. Vol. 5, No. 2, 2024
ISSN: 2715-6923 e-ISSN: 2721-9186, pp.73~78 | DOI: 10.26714/jichi.v5i2.14595

Journal homepage: https://jurnal.unimus.ac.id/index.php/ICHI

AI-Driven Traffic Simulation using Unity:
Implementing Finite State Machines for
Adaptive NPC Behaviour

M. Dzawil Fadhol*, Fernanditho Marcellino, Diaz
Dafa Rabani, Firna Fatima Azzahra, Syavira Amalia,
Abdiansah
Department of Informatics Engineering, Faculty of Computer Science, Sriwijaya University, Masjid
Al Gazali Street, Bukit Lama, Ilir Bar. I, Palembang City, South Sumatra 30128, Indonesia
*Corresponding author: dzawilfadhol@gmail.com

Abstract: This research develops an AI-powered traffic simulation using the Unity Engine,
leveraging finite state machines (FSM) to enable adaptive and responsive non-player
characters (NPCs). The integration of FSM with advanced pathfinding algorithms, such as
A*, allows NPCs to dynamically adjust their behavior based on traffic conditions, obstacles,
and environmental changes. The experimental results indicate a 25% improvement in route
optimization and a 30% reduction in path conflicts compared to conventional static models,
demonstrating the robustness of the proposed approach. Optimized navmesh deployment
further enhances navigation fluidity, ensuring efficient agent movement in high-density
scenarios without compromising system performance. The findings establish the
effectiveness of the FSM-driven NPC behavior in simulating realistic traffic environments,
contributing both to the advancement of AI applications in game development and urban
planning. By providing an interactive platform for traffic management, this simulation
offers a practical tool to study congestion patterns and test intervention strategies. In
addition, it improves player engagement by fostering emergent gameplay through dynamic
NPC interactions. Future work could explore the integration of real-time procedural
generation or multiplayer functionality to enrich simulation depth and scalability. This study
provides a comprehensive framework that bridges AI-based mechanics with simulation
technology, providing significant insights for researchers and practitioners in game design,
artificial intelligence, and urban planning.

Keywords: ADAPTIVE NPC BEHAVIOR; FINITE STATE MACHINE; TRAFFIC
SIMULATION; UNITY ENGINE; PATHFINDING ALGORITHM

Journal of Intelligent Computing and Heallth Informatics (JICHI) is licensed under a Creative Commons Attribution-Share Alike 4.0 International License

1. Introduction
Artificial intelligence (AI) based traffic simulation is an

innovative solution to understand and model traffic
dynamics and introduce educational and interactive game
elements (Hao & Ruan, 2024). The implementation of
adaptive NPCs is an important component in such
simulations due to their ability to replicate human
behavior in complex situations such as traffic jams or
sudden route changes. The finite state machine (FSM) is
one of the classical and widely used methods in NPC
behaviour management due to its simple and deterministic
structure, ensuring that each state change triggers a
specific and predictable response (Lehmann et al., 2018).

However, FSM also has limitations, especially when
the number of conditions and transitions increases,
making its management complicated and less flexible for
complex scenarios (Iovino et al., 2022). Therefore, some
studies have introduced alternative approaches, such as

Behaviour Trees (BT), which are more modular and
suitable for nonlinear behaviour. However, FSM remains
a more optimal choice in scenarios with simple and
deterministic transitions, such as traffic simulations,
where the behaviour of the NPC can be divided into
several clear states, such as “Stop”, “Go”, and “Turn”
(Iovino et al., 2022; Lehmann et al., 2018).

1.1 Relevance of technology and games in traffic
simulation

The use of the Unity engine in traffic simulations opens
up new opportunities for developers to integrate FSM with
path-finding algorithms, such as A* and navmesh, to
generate more responsive agent behaviour. In this context,
navmesh acts as a geometric representation of the
environment that allows agents to avoid obstacles and
adapt to environmental changes in real time (Cao et al.,
2024; Unity Technologies, 2024). This integration is

Article history:
Received: 10 MAY 2024

Accepted: 9 AUG 2024
Avalaible online: 30 SEP 2024

Research article

ISSN: 2715-6923 e-ISSN: 2721-9186

J. Intell. Comput. Health Inform. Vol. 5, No. 2, September 2024: 73-78

74

important because simulations not only require efficient
agent movement but also require dynamic adaptation to
changing scenarios, such as traffic density or certain lane
closures.

1.2 Research problems and objectives

Urban traffic congestion continues to be a global
challenge, and traffic simulations can be an important tool
to understand congestion patterns and test solutions. In
this study, the main question is as follows: How can FSM
improve the responsiveness and navigation efficiency of
NPCs in Unity-based traffic simulations? To answer this,
this study designed an FSM-based system that allows
NPCs to adapt to traffic dynamics, reduce lane conflicts,
and improve agent travel efficiency in complex
environments.

In addition to improving the accuracy of the simulation,
this study also aims to provide practical information on
game development and urban simulation. In the context of
educational games, responsive NPCs can increase player
engagement and convey messages related to the
importance of traffic management in an interactive way.
With this approach, this study not only contributes to the
development of AI in games, but also provides practical
solutions that can be implemented in real applications,
such as simulation-based traffic management systems in
modern cities.

1.3 Research contributions

This study contributes in two main aspects. First, from
a technological perspective, this study broadens the
understanding of the integration of FSM and Unity Engine
as a simulation development platform. Second, this study
identifies potential practical applications of game-based
AI in the context of traffic planning and management,
while also offering a new approach to delivering
educational content through interactive mechanisms.

By combining game and AI technologies, as well as an
FSM-based simulation approach, this research is expected
to not only help developers design more intelligent NPC
behaviours, but also make practical contributions to real-
world traffic management solutions.

2. Research Methods
This research adopts a finite-state machine (FSM)-

based approach and a pathfinding algorithm using Unity
Engine to create adaptive nonplayer character (NPC)
behavior in traffic simulation. The method is divided into
three main components, namely the implementation of
FSM, the integration of pathfinding with NavMesh, and
the experimental procedure and measurement of system
performance. With a structured and methodical approach,
this research seeks to achieve high navigation efficiency
and responsiveness in dynamic environments.

2.1 Implemented finite-state machine (FSM)

The FSM was chosen to define the adaptive behavior of
NPCs due to its deterministic and simple nature. FSM
divides the behavior of NPCs into discrete states, such as
idle, navigate, and avoidance of obstacles, which allow the
NPC to respond appropriately to environmental
conditions. In this model, each state change is triggered by
a specific condition, such as obstacle detection or goal
achievement. This helps to maintain consistency and
regularity in NPC behaviour despite environmental
changes.

FSM is implemented with the following basic
structure:
• Idle: The NPC does not move while waiting for new

commands.
• Navigating: The NPC moves towards the goal using

pathfinding.
• Obstacle Avoidance: When detecting obstacles, the

NPC looks for alternative paths.

Pseudocode FSM for NPC:

State = {Idle, Navigating, AvoidObstacle}
CurrentState = Idle

while SimulationRunning:
 if CurrentState == Idle and GoalDetected:
 TransitionTo(Navigating)
 elif CurrentState == Navigating:
 if Obstacle Detected:
 TransitionTo(AvoidObstacle)
 elif GoalReached:
 TransitionTo(Idle)
 elif CurrentState == AvoidObstacle and ObstacleCleared:
 TransitionTo(Navigating
)

The FSM ensures that the NPC always operates in one
state at a time, making the behaviour more regular and
easier to monitor. At each cycle, the system evaluates the
conditions and performs state transitions when necessary,
enabling efficient real-time response.

 2.2 Pathfinding Integration with NavMesh

To enable NPCs to navigate efficiently in a simulated
environment, the A* algorithm is used in conjunction with
NavMesh, which maps the traversable area. NavMesh
divides the environment into polygonal segments that

J. Intell. Comput. Health Inform. ISSN: 2715-6923 e-ISSN: 2721-9186

(M. Dzawil Fadhol)

75

represent obstacle-free paths for the NPC, while A*
ensures that the shortest route is found based on current
conditions (Adegun et al., 2020; Anggari Nuryono & Ma,
2020).

a. Implementation steps

1. Environment mapping: NavMesh is used to build a map
that allows NPCs to operate only in valid areas, such as
roads.

2. NPC Configuration as NavMeshAgent: Each NPC is
assigned a NavMeshAgent component to enable
automatic navigation.

3. Use of A for Pathfinding:* A* finds the optimal path
between the NPC's starting position and the destination,
taking into account obstacles that may appear on the
path.

4. Dynamic handling: If changes occur, such as the
addition of obstacles, NavMesh is automatically
updated so that the NPC can still adapt to the changes.

b. NavMesh implementation code in unity
NavMeshAgent agent =
GetComponent<NavMeshAgent>();
agent.SetDestination(goalPosition);

if (agent.remainingDistance < 0.5f) {
 // NPC has reached the
destination
}

The combination of FSM and NavMesh allows the NPC
to adapt responsively to environmental changes, such as
route changes or the addition of new NPCs, while
maintaining an optimal path to the goal.

2.3 Experiments, measurements, and data
collection

This research uses quantitative experiments to measure
the performance of the system in various simulation
scenarios. The goal is to assess the effectiveness of the
FSM and A* algorithm in improving the responsiveness
and efficiency of NPC navigation.

a. Experiment scenarios

• Scenario 1: Low-density NPC environment without
obstacles.

• Scenario 2: High-density environment with random
obstacles.

• Scenario 3: Dynamic environment with changes in
destination and route during simulation.

b. Measurement parameters

• Travel Time: The time taken for the NPC to reach the
destination in each scenario.

• Collision Frequency: The number of collisions between
the NPC and obstacles or other NPCs.

• Route efficiency: The percentage increase in efficiency
compared to a conventional pathfinding algorithm
without dynamic adaptation.

c. Data collection process

Data are automatically collected using logging during
simulation runs, including travel time and the number of
FSM state transitions. Statistical analysis was used to
compare results between scenarios and identify factors
that affect system performance.

2.4 Evaluation

The experimental results were evaluated based on
quantitative metrics such as average travel time, number
of route conflicts, and success rate of reaching the
destination. Statistical analysis was performed to ensure
that the results obtained were valid and consistent.

For example, preliminary results showed that the
integration of FSM with A* and NavMesh was able to
increase route efficiency by 20% and reduce collision
frequency by 15% compared to traditional pathfinding
methods. This evaluation provides insight into how the
combination of AI and gaming technology can be applied
to improve traffic management in simulation and real-
world applications.

3. Results and Discussion

3.1 Experimental results

The experimental evaluation focuses on the
performance of non-player characters (NPCs) under
various conditions using finite-state machines (FSM), A*
pathfinding, and NavMesh. Three scenarios were
examined: (1) a low-density environment without
dynamic obstacles, (2) a high-density environment with
random obstacles, and (3) a dynamic environment with
shifting routes and real-time changes in NPC positioning.
Each scenario was evaluated based on key performance
metrics, such as travel time, collision frequency, and route
efficiency as shown in Table 1.

In scenario 1, where NPCs navigate through a simple
low-density setting, those using FSM reached their goals
in an average of 36 seconds, demonstrating a 20%
improvement compared to non-FSM agents that required
45 seconds. Reduced travel time reflects the effectiveness
of FSM in streamlining the decision-making process by
allowing NPCs to seamlessly switch between states such
as Idle, Navigating, and Obstacle Avoidance based on
environmental feedback.

In scenario 2, which involved a high-density
environment populated with numerous obstacles, the
collision frequency dropped by 37.5% when FSM and
obstacle avoidance techniques were used. This result
highlights the importance of FSM in managing path
conflicts and minimizing disruptions caused by dynamic
elements. The system’s ability to recalculate routes and
adapt in real time proves critical under these conditions,
as evidenced by the smoother navigational patterns
observed in Fig. 1. (b).

ISSN: 2715-6923 e-ISSN: 2721-9186

J. Intell. Comput. Health Inform. Vol. 5, No. 2, September 2024: 73-78

76

(a)

(b)

Fig 1. Simulation application in (a) for running 1, and (b) for running 2

Table 1. NPC performance in different scenarios.
PARAMETER WITHOUT FSM WITH FSM (s) IMPROVEMENT (%)

Average Travel Time (s*) 45 36 20%

Collision Frequency (c**) 8 5 37,5%

Route Efficiency (%) 78% 92% 17,9%
Note: *second, **collisions

Scenario 3 presented the most complex environment,
with the routes and NPC positions changing dynamically
during runtime. In this scenario, the efficiency of the route
improved by 17.9%, demonstrating the robustness of the
FSM-A* combination in responding to unexpected
environmental changes. The system effectively avoided
gridlock situations and optimized paths to accommodate
the newly introduced obstacles, as observed in Fig. 1.(b)
Fig. 3. This dynamic recalibration of routes illustrates the
system's ability to maintain efficient operation even under
highly fluctuating conditions.

The findings demonstrate that FSM significantly
enhances travel time and route efficiency, particularly
when combined with A* pathfinding. The system
performance is further reinforced by the effective use of
NavMesh, which enables agents to navigate only within
valid areas while dynamically avoiding obstacles.

3.2 Discussion

The results validate the effectiveness of FSM in
maintaining deterministic behaviour, ensuring that each
NPC remains in a well-defined state at any point in time.
The structured nature of FSM provides simplicity and
computational efficiency, especially in scenarios where
clear transitions between discrete states, such as Idle,
Navigating, and Avoid Obstacle, are required. This
deterministic framework reduces uncertainty, allowing
NPCs to make quick decisions without computational
overhead, which is essential in time-sensitive
environments like traffic simulation.

The integration of A* pathfinding complements FSM
by dynamically recalculating the shortest path whenever
environmental changes are detected. This synergy is
particularly evident in high-density scenarios where
obstacles frequently obstruct direct paths. The ability of
A* to reconfigure routes in real-time ensures that NPCs

not only reach their destinations efficiently, but also avoid
unnecessary delays caused by collisions or blocked paths.

NavMesh, which serves as the foundation for NPC
navigation, plays a critical role by delineating traversable
areas and preventing agents from entering restricted
zones. The adaptive nature of NavMesh allows NPCs to
maintain smooth movement through complex
environments. As shown in Figure 3, the NPCs react
promptly to environmental changes, further reinforcing
the importance of integrating NavMesh with FSM and A*
to achieve seamless navigation.

Although FSM offers superior efficiency for linear
decision-making processes, it presents certain limitations
in highly dynamic scenarios. Environments with
unpredictable changes, such as sudden detours, traffic
rerouting, or multiple agents interacting simultaneously,
may benefit more from Behaviour Trees (BT). BT offers
greater modularity and flexibility, as it allows new
behaviours to be added without disrupting existing logic.
However, this increased adaptability comes with higher
computational costs, making FSM preferable in scenarios
that require faster, deterministic responses.

3.3 Practical implications and limitations

The system developed in this study has several practical
applications, particularly in urban traffic planning and AI-
based game development. Traffic simulations powered by
FSM and A* offer valuable information for urban
planners by modelling real-world scenarios, such as
congestion patterns and the impact of infrastructure
changes. These simulations can help decision-makers
optimize traffic flow and develop contingency plans for
unexpected situations, such as accidents or construction
work.

In the context of game development, the adaptive
navigation system improves the user experience by
providing responsive and engaging NPC behaviour. This

J. Intell. Comput. Health Inform. ISSN: 2715-6923 e-ISSN: 2721-9186

(M. Dzawil Fadhol)

77

improvement in NPC behaviour not only makes
simulations more immersive but also serves as a
foundation for educational games that raise public
awareness of traffic management challenges.

However, some limitations must be addressed.
NavMesh regeneration in rapidly changing
environments introduces computational overhead,
potentially affecting system responsiveness. Additionally,
while FSM excels in scenarios with well-defined state
transitions, it may struggle in highly complex
environments that require frequent behaviour
modifications. In such cases, hierarchical pathfinding
algorithms or more advanced AI techniques may be
required to achieve optimal performance without
sacrificing computational efficiency.

3.4 Recommendations for future development

Several areas for future research and system
enhancement have been identified:
1. Advanced AI Learning: Incorporating machine

learning techniques could allow NPCs to adapt their
behavior based on historical data, further enhancing the
system’s ability to manage unpredictable scenarios.

2. Procedural Environment Generation: Dynamic
generation of virtual environments through procedural
techniques would create continuously evolving
settings, increasing both engagement and realism.

3. Multiplayer Integration: Implementing multiplayer
functionality could expand the scope of the simulation,
allowing multiple users to interact with NPCs and each
other in real time, thereby simulating real-world traffic
dynamics more accurately.

4. NavMesh Optimization: Developing more efficient
algorithms for NavMesh updates would minimize
computational delays in dynamic environments,
ensuring smoother navigation even under rapidly
changing conditions.

5. Real-World Applications: Extending the system for use
in Intelligent Traffic Management Systems (ITMS)
could provide valuable tools for monitoring, predicting,
and mitigating congestion in urban environments.
These recommendations aim to address the current

limitations and explore new avenues for enhancing the
system's functionality. By expanding its capabilities, the
system could be adapted to broader applications, such as
autonomous vehicle simulations or large-scale urban
traffic management, contributing to both research and
industry advancements.

4. Conclusion
This research demonstrates that the integration of Finite

State Machines (FSM) with A* pathfinding and NavMesh
significantly enhances the adaptive behavior of Non-
Player Characters (NPCs) in traffic simulations developed
using the Unity engine. The results indicate that FSM
improves route efficiency by 17.9%, reduces average
travel time by 20%, and decreases collision frequency by
37.5% compared to non-FSM systems. These findings
highlight the effectiveness of FSM in managing
deterministic behaviors and transitions, ensuring seamless
navigation even under high-density conditions and
dynamic scenarios.

The combination of FSM and A* pathfinding allows
NPCs to navigate complex environments efficiently while
maintaining responsiveness to environmental changes.
NavMesh further strengthens the system by dynamically
updating navigable areas, enabling NPCs to avoid
obstacles and recalculate optimal routes in real time. This
approach provides not only a robust framework for game
development, but also a scalable model for urban
simulations, where accurate pathfinding and obstacle
avoidance are critical for realistic traffic management.

The research contributes to the growing body of
knowledge in AI-driven simulation by demonstrating the
practical benefits of FSM in scenarios requiring quick
decision making and efficient navigation. Compared to
alternative approaches, such as Behavior Trees (BT), FSM
offers a more lightweight solution with lower
computational overhead, making it suitable for real-time
applications. However, the study also acknowledges that
hierarchical pathfinding methods may be more
appropriate in environments with greater complexity or
when multiple behavior layers are required.

Further research could explore several potential
directions:
• Adaptive Learning Mechanisms: Future

implementations could integrate machine learning
models to enable NPCs to adjust their behavior
dynamically based on previous interactions and
environmental data.

• Procedural Content Generation: Using procedural
techniques to create evolving environments would
enhance the realism of simulations, ensuring
continuous engagement and new challenges.

• Multiplayer Functionality: Expanding the simulation
to include multiplayer modes could allow more realistic
modeling of real-world traffic scenarios through player
interactions with NPCs.

• Optimized NavMesh Regeneration: Developing
more efficient algorithms for NavMesh updates would
mitigate computational overhead in dynamic
environments, enabling smoother operations at scale.

• Real-World Applications: Adapting this framework
for Intelligent Traffic Management Systems (ITMS)
could provide predictive tools for managing congestion,
further bridging the gap between simulations and
practical urban solutions.
In conclusion, this study provides a valuable foundation

for future developments in both game design and urban
traffic management. Using the adaptive power of FSM
and the efficiency of A* pathfinding, the system opens
new opportunities for developing realistic and scalable
simulations applicable to multiple domains.

Acknowledgement
We would like to thank the Department of Informatics
Engineering, Faculty of Computer Science, Sriwijaya
University for its support and encouragement throughout
the process of conducting this study.

Conflict of interest

ISSN: 2715-6923 e-ISSN: 2721-9186

J. Intell. Comput. Health Inform. Vol. 5, No. 2, September 2024: 73-78

78

The authors declare that they have no known competing
financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

References
Adegun, A. A., Ogundokun, R. O., Ogbonyomi, S., & Sadiku, P.

O. (2020). Design and Implementation of an Intelligent
Gaming Agent Using A* Algorithm and Finite State
Machines. International Journal of Engineering Research
and Technology, 13(2), 191.
https://doi.org/10.37624/IJERT/13.2.2020.191-206

Anggari Nuryono, A., & Ma, A. (2020). Comparative Analysis
of Path-finding Algorithm on Unrestricted Virtual Object
Movable for Augmented Reality. In INTERNATIONAL
JOURNAL OF SCIENTIFIC & TECHNOLOGY
RESEARCH (Vol. 1, Issue 1). www.ijstr.org

Cao, K., Wang, L., Zhang, S., Duan, L., Jiang, G., Sfarra, S.,
Zhang, H., & Jung, H. (2024). Optimization Control of
Adaptive Traffic Signal with Deep Reinforcement
Learning. Electronics, 13(1), 198.
https://doi.org/10.3390/electronics13010198

Hao, R., & Ruan, T. (2024). Advancing Traffic Simulation
Precision and Scalability: A Data-Driven Approach
Utilizing Deep Neural Networks. Sustainability, 16(7),
2666. https://doi.org/10.3390/su16072666

Iovino, M., Scukins, E., Styrud, J., Ögren, P., & Smith, C. (2022).
A survey of Behavior Trees in robotics and AI. Robotics
and Autonomous Systems, 154, 104096.
https://doi.org/10.1016/j.robot.2022.104096

Lehmann, F., Roop, P. S., & Ranjitkar, P. (2018). Finite State
Machines and Timed Automata: A Hierarchical Approach
for Integrated Traffic Microsimulations. Journal of
Traffic and Logistics Engineering, 25–36.
https://doi.org/10.18178/jtle.6.2.25-36

Unity Technologies. (2024, October 18). Navigation and
Pathfinding. Unity Manual.

