Jurnal Pendidikan Sains (JPS). Vol. 9(2) pp 126-136 ISSN:2339-0786 DOI: https://doi.org/10.26714/jps.9.2.2021.126-136

The framework of Technological Pedagogical Content Knowledge on Chemistry Learning Tools Development

Rifanny Rizka Putri^{a,1,*}, Muhaimin^{b,2}, Sutrisno^{b,3}

¹ Chemistry Education Master Program, Jambi University, Jl. Raden Mattaher No. 16, Jambi City 36144, Indonesia

² MIPA Doctoral Study Program, Postgraduate, Jambi University, Jl. Raden Mattaher No. 16, Jambi City 36144, Indonesia

³ Jambi University, Jl. Jambi - Muara Bulian No. Km. 15 Mendalo Darat, Muaro Jambi 36122, Indonesia ¹ <u>rifannyrizka@gmail.com</u> *; ² <u>Muhaimin 73@yahoo.de</u> ; ³ <u>Herasutrisno@gmail.com</u>

* corresponding author

Article history		Abstract				
Submission	: 2021-01-29	Electrolyte and nonelectrolyte solutions are chemical materials with three levels				
Revised	: 2021-03-22	of representation, and they are materials that integrate scientific skill and				
Accepted	: 2021-07-13	conceptual understanding. However, there were still many learning difficulties				
1		during the learning process and caused the low students' science process skills.				
Keyword		One of the factors that students experience difficulty learning was that teachers				
TPACK Fran	nework	- were not optimal in lesson planning. In fact, in achieving learning objectives, it				
TPACK Anal		was necessary to have optimal learning plans. One of the optimal learning plans				
Electrolyte and		was obtained by preparing learning instruments such as lesson plans and an algotropic worksheet that integrated <i>TPACK</i> . This research is a descriptive study.				
Nonelectrolyte Solution		electronic worksheet that integrated <i>TPACK</i> . This research is a descriptive study that aims to analyze the learning needs and descriptively the TPACK components				
Science Proc		and science process skill indicators in the developed chemistry learning tools.				
Learning Too	,	The data collection techniques in this study used document study, interviews, and				
Learning 100	/15	surveys. The research subjects were students and teachers of class XI IPA SMA				
		in Jambi City. This research could conclude that the learning needs to be				
		analyzed needed <i>TPACK</i> Integrated in the developed chemistry learning tools.				
		The second, this learning tool integrated Technology, Pedagogic, and Content				
		Knowledge components, and it had science process skill indicators.				

BY This work is licensed under a Creative Commons Attribution 4.0 International <u>License</u>

1. INTRODUCTION

Chemistry material is one of the senior high school learning materials, consisting of three levels of representation: the macroscopic level, the submicroscopic level, and the symbolic level. The macroscopic level is a phenomenon that can be observed in plain view, such as the physical properties and phenomena that occur in nature (Herawati, Mulyani, & Redjeki, 2013). The submicroscopic level is a phenomenon that cannot be observed with the naked eye, such as the particular movement of atoms of matter. At the same time, the symbolic level depicts the macroscopic and submicroscopic levels into a symbol, such as reaction equations and symbols of elements and compounds (Desyana & Melati, 2014).

The material of electrolyte and nonelectrolyte solutions is one of the chemical materials where there are three levels of representation that are widely available in everyday life. The movement of the particles can be observed, and there are chemical symbols so that the material is helpful for students or institutions that study it. However, in the learning process, there are still many learning difficulties. Wilandari's research explained that students of class X IPA SMA in Pandeglang Banten can explain a

https://jurnal.unimus.ac.id/index.php/JPKIMIA/index

solution, provide examples for the solution appropriately, and identify solutes and solvents in a solution. However, most students think that the solution sugar and salt are electrolytes (Wilandari, Ridwan, & Rahmawati, 2018). Then another difficulty was found in the Medina study, where Padang City students in Senior High School experienced difficulties in understanding electrolyte and nonelectrolyte solution material on the concepts of ionic sounds, polar covalent compounds, and ionization. Students' wrong answers could be because students did not fully understand the concept of electrolytes in macro, micro, and symbolic terms (Medina, 2017).

One of the factors for students who have difficulty learning is that the teacher is not optimal in planning lessons. According to (Pane & Darwis Dasopang, 2017), learning is a process of interaction between a teacher and students with other learning resources to achieve the expected learning goals. Of course, in achieving learning objectives, it is necessary to design an appropriate learning plan. The material of electrolyte and nonelectrolyte solutions is a material that integrates scientific attitudes and conceptual understanding. This is called the science process skill (Suja, 2021). Learning tools are needed to improve students' science process skills by preparing instruments in the form of lesson plans and electronic worksheets that integrate Technological Pedagogic Content Knowledge (*TPACK*) to solve the problems. The *TPACK* framework integrates technology, pedagogy, and content in producing ICT-based learning (Mairisiska, Sutrisno, & Asrial, 2014).

Based on research conducted by (Hayati, Sutrisno, & Lukman, 2014), the *TPACK* integrated chemistry learning tool was proven to optimize students' Higher Order Thinking Skill on colloid material. Then according to (Gunawan, Sutrisno, & Muslim, 2020) where the *TPA*skillssed mathematics learning tool is able to optimize students' critical thinking skills in the material of the two-variable lin canon system. Researchers see benefits in development research in *TPACK*, which is to optimize students' learning skills. When viewed in the field of chemistry, *TPACK* learning is still rarely carried out, especially on electrolyte and nonelectrolyte solution material, so that researchers conduct development research on *TPACK*-based learning tools on these materials. However, the Researcher could not analyze the *TPACK* components to increase science process skills directly or indirectly using Path Analysis in this condition because the Covid-19 pandemic made it challenging to measure students' science process skills. So, the purpose of this research was (1) to analyze the learning needs; (2) to describe descriptively the *TPACK* components and science process skill's indicators contained in this development learning tools, so that this research was packaged under the title "*The framework of Technological Pedagogical Content Knowledge in chemistry learning tools development* "

2. METHOD

This research is descriptive research describing learning tools consisting of *TPACK* components .nd science process skill indicators; where to get it, the researchers need to analyze learning needs through several samples. Researchers use the purposive sampling method to determine research subjects. The research subjects are 30 students of class XI IPA and two SMAN 3 Jambi and SMAN 11 Jambi teachers. The types of data in this research are interviews, document studies, and questionnaires. Interviews were conducted using teacher interview sheet instruments, with measurement indicators by the 4D development research procedure by Thiagarajan (Mulyatiningsih, 2013), with the following description.

Aspect	Indicator
Learning Materials	Student's ability to understand learning
-	Achieve The Cut Score
Students'	Students' understanding of chemical representations
Experience	Students' Attitudes (affective, cognitive, psychomotor)
	Student response to technology
Learning Activities	Learning Model
in Electrolyte and	21st Century Skills
Nonelectrolyte	Student interest in learning
Solution Materials	Student's motivation to study
	Students' learning styles
	Science Process Skills
Media Selection	Learning Tools
	Teaching materials
	Learning facilities and infrastructure

|--|

The data analysis technique used on the teacher's interview sheet was coding. According to Saldana, The coding technique is a way of obtaining words or phrases that stand out by capturing and marking the essence of facts that emerge strongly from several collections of language or visual data (Mahpur, 2017). The data can be in the form of interview transcripts.

The questionnaire instrument is in the form of a questionnaire on the student's needs and characteristics. The type of survey instrument is a closed questionnaire. The questionnaire instrument indicators of student needs and characteristics were adapted by Thiagrajan's 4D development research procedure (Mulyatiningsih, 2013), with the following description.

Table 2. The grid of a	nalyzes students' needs and characteristics' questionnaire	
Aspect	Indicator	
Learning Materials	Students' understanding of Electrolyte and Nonelectrolyte Solution	
-	Learning difficulties in electrolyte and nonelectrolyte solutions	
Students' Experience	Experience doing practicum	
_	Experience operating a laptop	
Learning Activities in Electrolyte and	Teacher studies chemistry outside of school hours	
Nonelectrolyte Solution Materials		
Media Selection	Solutions in understanding chemical materials	
	Teaching materials	
	Learning facilities and infrastructure	

Learning facilities and infrastructure

Then the data obtained from the questionnaire were analyzed using a rating scale (Eko Yulianto & Rohaeti, 2013), with the following formula.

Observation results' Score = $\frac{\text{Obtained Score}}{\text{Maximum Score}} \times 100\%$ (1)

Furthermore, the document studies in this researchers used previous articles that are related to this research. According to (Arikunto 2014), data analysis techniques in documentation studies are not complex. Researchers only look for variables that have been determined. If there are variables to be looking for, the Researcher just needs to record these things with free sentences. This is done by researchers in finding data in previous articles.

3. RESULTS AND DISCUSSION

Learning difficulties have caused students' scientific process skills not to be achieved optimally in studying electrolyte and nonelectrolyte solution materials. Analysis results are obtained based on related journals, teacher's interviews, and questionnaires for student characteristics requiring the development of TPACK-based learning tools.

No.	Research Problems	Science Process Skills' Indicator
1.	Research by (Suari, Selamat, & Suja, 2018) said that the ethanol compound is classified as an electrolyte solution because it is dissolved in water and will break down into free molecules. Based on the Researcher's analysis, if students are right in gathering information, students can get the correct answers regarding the types of ethanol compound solutions. Then the students did not process the data well because, in the experiment, it was clear that the ethanol solution could not turn on the light. Based on this analysis, it is evident that students cannot collect information and process data correctly, so they cannot describe the relationship between the type of ethanol solution and the experiments that occur.	 Students cannot <u>collect information</u>, so students cannot answer correctly about the ethanol compound solution. Students did not <u>process the data</u> well because, in the experiment, it was clear that the ethanol solution could not turn on the light. Students cannot <u>describe the relationship between</u> the type of ethanol solution and the experiments that occur.
2.	Research by (Wilandari et al., 2018), students assume that the sugar and salt solutions are electrolytes; both sugar crystals and salt crystals, when dissolved in water, will break down into free ions. According to the Researcher, students cannot carry out and analyze research properly because it is clear that salt solution can turn on the lamp while sugar cannot turn on the light. Then students also cannot identify the properties of electrolyte and nonelectrolyte solutions. Students are challenged to describe the relationship between the electrolyte and nonelectrolyte solutions from a conceptual perspective with practice in the field. If	 Students cannot <u>do research</u> well because students who do research know that the salt solution can turn on the lamp while sugar cannot turn on the light. Students cannot <u>analyze research</u> well because it is evident that salt solution can turn on the lamp while sugar cannot turn on the lamp. Students cannot <u>identify the properties</u> of electrolyte and nonelectrolyte solutions during the practicum, So that students find it challenging to <u>describe the relationship between</u> the nature of electrolyte and

	students make observational data tables properly, it can help identify the properties of the solution and describe the relationship between variables so that minor misconceptions occur.	 nonelectrolyte solutions from a conceptual perspective with practice in the field. Students do not <u>make observational data tables</u> properly, so that students have difficulty identifying the properties of the solution and describing the relationship between variables.
3.	Based on the results of interviews with chemistry teachers at SMAN 3 and SMAN 11 Jambi City, not all students were active in conducting experiments, let alone connecting observational data with actual concepts.	 Students are not active at the beginning of the lesson Students do not integrate scientific skills and conceptual understanding
4.	Based on data analysis through a questionnaire on the needs and characteristics of class XI IPA high school students in the city of Jambi (SMAN 3 and SMAN 11), about 20 % of students did not know what type of solution was ethanol, 50 % answered that C_2H_5OH is an electrolyte solution because it is a polar compound. However, About 30 % of students understand the questions and types of electrolyte and nonelectrolyte solutions.	 Students cannot <u>collect information</u>, so students cannot answer correctly about the ethanol compound solution. Students did not <u>process the data</u> well because, in the experiment, it was clear that the ethanol solution could not turn on the light. Students cannot describe the relationship between the type of ethanol solution and the experiments that occur.

The data analysis from a questionnaire on the needs and characteristics of class XI IPA high school students in the city of Jambi (SMAN 3 and SMAN 11) can be seen as follows.

No			Aspect		Student Response XI IPA (30 Students)	Percentage (%)
1.	Are che	mical materials challen	ging to study?		Bradents)	
1.	a.	Yes	ging to study.		25	83,3 %
	b.	No			5	16,6 %
2.			ugh for you to under	stand chemistry material?	5	10,0 /0
2.	a.	Yes	ugh for you to under	stand enemistry material.	18	60 %
	b.	No			12	40 %
3.	What ki	nd of understanding di	fficulties do vou oft	en encounter when studying		
	chemist		,	, , , , , , , , , , , , , , , , , , , ,		
	a.	Understanding the M	aterial Concept		4	13, 3 %
	b.	The concept applicati		veryday life	10	33,3 %
	с.	Understanding exerci			16	53,3 %
4.	What ef			ome your understanding?		
	a.	Search in books			5	16,6 %
	b.	Search in the internet			10	33,3 %
	с.	Search in various lite	rature		15	50 %
5.	What d	o you hope that the	difficulty of under	rstanding chemistry can be		
	adequate	ely resolved?				
	a.	There are learning su			2	6,66 %
	b.	There is a complete le	earning media about	chemistry (LKPD with an		83,3 %
				ions of material including		
		photos, videos, anima		exercises)	25	
	с.	Get more practice exe			3	10 %
6.	Have yo	ou ever practiced electro	olyte and nonelectrol	yte solutions?		
	a.	Yes			30	100 %
	b.	No			_	_
7.	Are elec		yte solution material	s inappropriate material?		
	a.	Yes			11	36,6 %
	b.	No			19	63,3 %
8.		e correct answer to the f				
				ch is the electrolyte and		
		trolyte solution? Give y				
	No.	Sample Distilled water	Substance Formula	Lamp Lights		
	1.	Distilled water Sulfuric acid solution	H_2O H_2SO_4	No flame Lights up brightly		
	2.	1M	112004	2.5ms up originaly		
	3.	Ammonium Chloride	NH ₄ Cl	Dimly lit		
		Solution 1M	CUO	Noflowe		

No flame

Lights up brightly

 $C_{12}H_{22}O_{11}$

NaCl

Sugar solution 1M

Sodium Chloride

Solution 1M		
a. Answered and correct	25	83,3 %
b. Answered and wrong	4	13,3 %
c. No answer	1	3,33 %
9. Polar covalent compounds can also partly form vital electrolytes, and som	ne can	
form weak electrolytes. C_2H_5OH is a polar covalent compound. In your optimized		
what type of solution does C_2H_5OH belong to? Give your argument!	,	
a. Answered and correct	9	30 %
b. Answered and wrong	15	50 %
c. No answer	6	20 %
10. Consider the following reaction.		
NaCl(aq) $\rightarrow Na^+(aq) + Cl^-(aq)$		
$CH_3COOH(aq) \leftrightarrow CH_3COO^-(aq) + H^+(aq)$		
$C_2H_5OH(aq) \rightarrow 2C + 3H_2 + \frac{1}{2}O_2$		
Which is an electrolyte compound and can conduct electricity? Give	vour	
argument!	J * *	
a. Answered and correct	13	43,3 %
b. Answered and wrong	10	33,3 %
c. No answer	7	23,3 %
11. Do you re-learn chemistry outside of school hours?		· · · ·
a. Yes	18	60 %
b. No	12	40 %
12. How do you study chemistry outside of school hours?		
a. Learn from Book	14	46,6 %
b. Learn from the internet	7	23,3 %
c. Learn from literature	9	30 %
13. Can you use a computer/laptop?		
a. Yes	29	96,6 %
b. No	1	3,33 %
14. Do you have a computer/laptop?		
a. Yes	25	83,3 %
b. No	5	16,6 %
15. Do you have a smartphone/tablet (Android, IOS (iPhone), Windows Ph	nones,	
etc.)?		
a. Yes	30	100 %
b. No	-	-
16. Is there a computer laboratory in the school?		
a. Yes	30	100 %
b. Nothing	-	-
17. Are LCD / Infocus facilities available at school?		
a. Yes	30	100 %
b. Nothing	_	_
18. Has your chemistry teacher ever used media such as power points and v	virtual	
labs in learning?		
a. Yes	30	100 %
b. No	_	_

Based on the problems in the two tables above, science process skills are still low. So that, researchers want to develop TPACK-based learning tools on electrolyte and nonelectrolyte solution material. However, The research implementation was only at the learning need analysis step because of COVID 19. Then the Researcher described descriptively the TPACK components and science process skill indicators contained in the learning tools. The descriptive analysis process begins by knowing the problems contained in the electrolyte and nonelectrolyte solution material, then identifying and categorizing indicators of low science process skills on these problems, then analyzing what technology can solve the problem, and analyzing what learning models can convey messages learning the material, with the following reviews. Indicators of low student science process skills, projected into Competency achievement indicators, are described as follows.

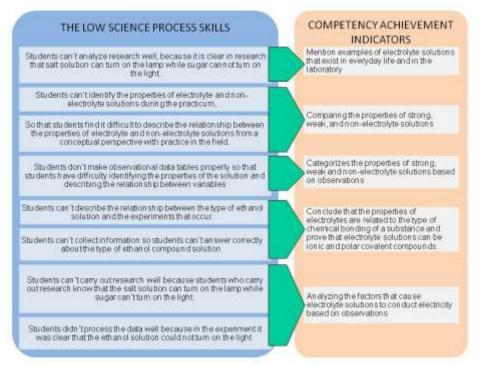


Figure 1. Identification of Competency Achievement Indicators Based on Low Science Process Skills

Based on research by (Mairisiska et al., 2014) said that through the development of TPACK-based learning tools, students' critical thinking skills were categorized as good. Hence, the component that significantly affected was Technology Content Knowledge (0.529), so that researchers analyzed what technology could solve the problem of low science process skills, with the following description.

COMPETENCY ACHIEVEMENT INDICATORS	TECHNOLOGY USED
Mention examples of electrolyte solutions that exist in everyday	Google Classroom
Comparing the properties of strong, weak, and non-electrolyte solutions	1
Conclude that the properties of electrolytes are related to the type of chemical bonding of a substance and prove that electrolyte solutions can be ionic and polar covalent compounds.	Softwere 3D Pageflip (Learning Videos and Pictures)
Analyzing the factors that cause electrolyte solutions to conduct of electricity based on observations	Experimental Tools
Categorizes the properties of strong, weak and non-electrolyte solutions based on observations	and Materials

Figure 2. Identification of Technology Used Based on Competency Achievement Indicators

Based on the description of the image above, the Competency Achievement Indicators are referred to as Content Knowledge, and the technology used is referred to as Technology Knowledge, which can be concluded in a slice of the TPACK framework between Technology Knowledge and Pedagogic Knowledge as follows.

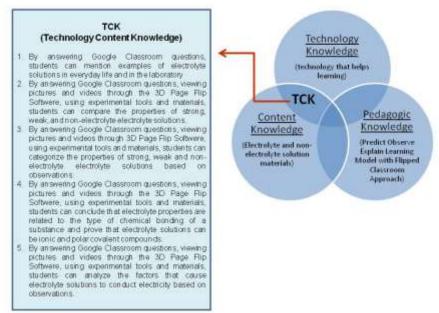


Figure 3. Technology Content Knowledge Framework (TCK)

The important thing in developing TPACK-based learning tools is a learning model (Pedagogic Knowledge) in delivering the material because, according to (Gunawan et al., 2020), TPACK components that have an effect are PCK (0.354) and PK (0.367) so that students' critical thinking skills fall into the outstanding category. Then the learning model that can optimize science process skills, according to (Nurlaili, Bakar, & Afrida, 2019), is the Predict Observe Explain learning model. In their research, at the beginning of student learning is not too active. Hence, researchers combine it with the flipped classroom approach, because according to (Nouri 2016), flipped classrooms can make active learning time-efficient and increase the low learning model with the Flipped Classroom (Pedagogic Knowledge) approach, a slice of the TPACK framework is obtained as follows.

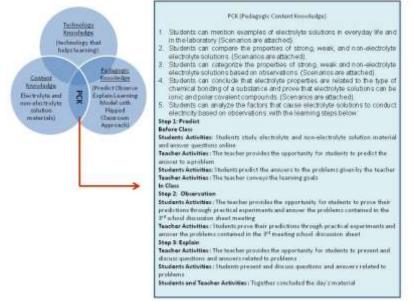


Figure 4. Pedagogic Content Knowledge Framework (PCK)

The problem in this study is that students' misconceptions are caused by students' lack of understanding from a submicroscopic point of view; students' misconceptions lead to soft science process skills, so students need technology in projecting the electrolyte and nonelectrolyte solution material so that learning can be conveyed, but in delivering the material and technology requires an appropriate

https://jurnal.unimus.ac.id/index.php/JPKIMIA/index

Jurnal Pendidikan Sains (JPS). Vol. 9(2) pp 126-136 ISSN:2339-0786 DOI: https://doi.org/10.26714/jps.9.2.2021.126-136

strategy so that the material can reach the recipient, so a learning model is needed to package the suitable material and technology to convey the message of learning. In addition to the proven success of the Predict Observe Explain Model in optimizing science process skills through previous journals, the selection of the Predict Observe Explain Model with the Flipped Classroom approach is also following electrolyte and nonelectrolyte solution materials using practicum and understanding concepts, according to (Warsono & Hariyanto, 2012) The Predict Observe Explain model motivates for students to investigate concepts that have not been understood to prove the prediction results. So, when students have not started practicum, students have predicted concepts that have not been understood in the form of practicum results. There is a process of integrating scientific skills and understanding concepts and students are also more motivated. Then to project abstract material, learning models, and materials combined with technology so that learning messages can be conveyed.

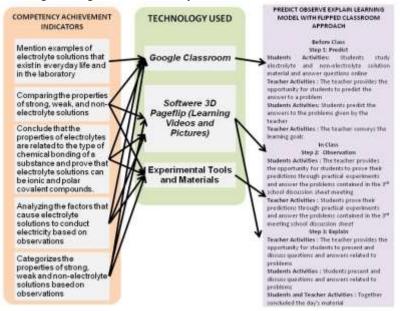


Figure 5. The linkage scheme between TPACK components

The following is an example of a product from the TPACK-based learning tool developed by researchers, where Technology Knowledge is in the form of 3D page flip software, Google Classroom, experimental tools, and materials; Content Knowledge, comparing the properties of strong, weak, and nonelectrolyte solutions based on observations; Pedagogic Knowledge in the form of Lesson Plan in Predict Observe Explain Learning with the Flipped Classroom approach.

Flipped	Teacher and Students' activities	Emerging	Technology Used
Classroom		Indicators of	
Approach/		Science Process	
Learning Step		Skills	
Before Class/	Students: Students open e-LKPD and watch videos	-	3D Page flip
Predict Step	presented by the teacher in e-LKPD. Videos that		
	contain materials such as the concept of		(The figure of
	electrolyte and nonelectrolyte solutions,		Product at Figure
	electrolyte solutions can be ionic and polar		6)
	covalent compounds, and test the electrical		
	conductivity using an avometer		
	Students: Work on the 2 nd meeting house assignment	 Collect and 	• 3D Page flip,
	sheet in e-LKPD online by opening google	process data	• Google
	classroom, then students are expected to ask	 Identifying 	Classroom
	questions related to material that is not	variables	
	understood, and questions are written in the		(The figure of
	comments column of the 2 nd meeting house		Product at Figure
	assignment sheet (google classroom), Other		7)
	students expected to answer questions raised by		')
	fellow students.		

https://jurnal.unimus.ac.id/index.php/JPKIMIA/index

	opportunities for students to predict the answer to a problem "Presented several solutions such as salt solution, lime solution, 1M NaOH solution, 1M HCl solution, battery solution, kitchen vinegar solution, Batanghari river water, which one is classified as a robust electrolyte solution and a weak electrolyte?"	variables, • Creating Hypotheses	
	Students: Students predict the answers to the problems given by the teacher.		
In-Class/ Observation Step	Teacher: The teacher provides opportunities for students to prove their predictions through practical experiments and opens the 2 nd school discussion sheet meeting as a reference	Design researchDo a research	 3D Page flip, Experimental Tools and Materials
	Students: Students and learning groups prepare experimental samples neatly and correctly. Students and their learning group conduct practical experiments on the properties of electrolyte solutions and nonelectrolyte solutions, observe and record observations with accurate results.		
	Teacher: The teacher provides opportunities for students to prove their predictions by answering the problems contained in the 2 nd school meeting discussion sheet	 Creating hypothesis, Identifying variables, 	 3D Page flip, Experimental Tools and Materials
	Students: Students and their learning group collect and process the data obtained from the observation results then the observation data is used to answer the problem.	 Create data tabulations, Collect and process data, Analyze Research Describe the relationship between variables 	
In-Class/ Explain Step	Teacher: The teacher provides opportunities for group representatives to conclude and present the results of the experiment as well as the results of the discussion (by reading the answers to the problems on the 2 nd school discussion sheet meeting)	 Collect and process data, Defining variables operationally 	3D Page flip
	Students: Students conclude and present the results of the experiment as well as the results of the discussion (by reading the answers to the problems on the 2 nd school discussion sheet meeting)	-	
	Teacher: The teacher provides opportunities for students to refute the opinions of other groups in order to get actual statements Students: Students: Students between groups mutually argue the	-	
	opinions of other groups in order to get the accurate statement	-	
	Teacher: The teacher guides students in making conclusions. Students: Students can conclude the difference in the properties of solid electrolyte solutions and weak electrolytes, categories of the solid electrolyte and weak electrolyte solutions based on observations, that electrolyte properties are related to the type of chemical bonding of a substance and prove that electrolyte solutions can	-	

An example of the relationship between Content Knowledge, Pedagogic Knowledge, and Technology Knowledge is evidenced by the product image described in table 2, with the following reviews.

Figure 6. Student activities use 3D Page flip to study the material of electrolyte and nonelectrolyte solutions

· desperiention	and and and an experimental representations.	
	Lembar Tugas Rumah: Pertemuan 2 Productive intervention for the production	
	Landam methodi terbagi dan pata terdam methodi kasi dar terdam etemolit ternak, shakar pin-pin dari terbakar ternatud si " Jandam term	
	Abe peng dimetasat dengan kabar kimis 71 aku setudiwe jens kabar kimis peng kamu ketasat k	
	Johanikar porgertilari dari prob katya kirina berlikut, ad keryawa kur, tal keryawa Konazer Polaci di beryawa Rosaler Nan-Polaci dari di bikamul Polac (* * ukeme erim	

Figure 7. Student activities use 3D Page flip to answer questions online

Based on the description above, the learning tools consist of Technological Pedagogical Content Knowledge (*TPACK*) components, where technology is an electronic worksheet, pedagogical is Predict-Observe-Explain learning model with the flipped classroom approach, content is the electrolyte and nonelectrolyte solution materials, Then learning tools such as e-Worksheet and lesson plan have science process skills' indicators. According to (Sitompul, Setiawan, & Purba, 2017), *TPACK*-based learning tools development improves learning achievement. Then according to (Waluyo & Nuraini, 2021), the TPACK-based instructional learning development can increase problem-solving ability. TPACK has a vital role as a provision for teachers in learning Islamic education. By understanding TPACK, Islamic education teachers can present innovative and creative learning and effective in the classroom so that students easily understand the ongoing learning (Ajizah & Huda, 2020). Based on the previous research journals, *the TPACK* framework has the potential to increase learning ability. The Researcher hopes another researcher could be continued this research and analysis in more detail about the analysis of TPACK in learning tools, analysis of science process skills that appear in using the learning tools, and The TPACK-based learning tools can increase the science process skills.

4. CONCLUSION

This study aims to analyze the observation result through data collection instruments in previous research journals, teacher interviews, and Questionnaires for Students' Needs and Characteristics. It concluded to need the *TPACK*-based learning tools development. Then the learning tools will develop were to consist of Technological Pedagogical Content Knowledge (*TPACK*) components, where technology is an electronic worksheet, pedagogical is Predict-Observe-Explain learning model with the flipped classroom approach, content is the electrolyte and nonelectrolyte solution materials, The learning tools such as e-Worksheet and lesson plan have science process skills' indicators.

Jurnal Pendidikan Sains (JPS). Vol. 9(2) pp 126-136 ISSN:2339-0786 DOI: https://doi.org/10.26714/jps.9.2.2021.126-136

ACKNOWLEDGMENT

The author would like to thank the supervisor, the teachers, and students who have been supportive for being the object of this research.

REFERENCES

- Ajizah, I., & Huda, M. N. (2020). Tpack Sebagai Bekal Guru Pai Di Era Revolusi Industri 4.0. *Ta'allum: Jurnal Pendidikan Islam*, 8(2), 333–352.
- Arikunto, S. (2014). Prosedur Penelitian Suatu Pendekatan Praktik. Jakarta: PT. RINEKA CIPTA.
- Desyana, V., & Melati, H. A. (2014). Analisis Kemampuan Multipel Representasi Siswa SMP Negeri di Kota Pontianak pada Materi Klasifikasi Benda. *Jurnal Pendidikan Dan Pembelajaran*, *3*(11).
- Eko Yulianto, & Rohaeti, E. (2013). Pengembangan majalah kimia untuk meningkatkan motivasi belajar dan kreativitas peserta didik kelas x SMA N 1 Mlati. *Jurnal Pendidikan Sains*, 01(1), 26–36.
- Gunawan, D., Sutrisno, & Muslim. (2020). Pengembangan perangkat pembelajaran matematika berdasarkan TPACK untuk meningkatkan kemampuan berpikir kritis. *Jurnal Pendidikan Matematika*, 11(2).
- Hayati, D. K., Sutrisno, & Lukman, A. (2014). Pengembangan Kerangka Kerja TPACK pada Materi Koloid untuk Meningkatkan Aktivitas Pembelajaran dalam Mencapai HOTS Siswa. *Edu-Sains*, 3(1), 53–61.
- Herawati, R. F., Mulyani, S., & Redjeki, T. (2013). Pembelajaran Kimia Berbasis Multiple Siswa Sma Negeri I Karanganyar Tahun Pelajaran 2011 / 2012. *Jurnal Pendidikan Kimia*, 2(2).
- Mahpur, M. (2017). Memantapkan Analisis Data Melalui Tahapan Koding. In *Repository Universitas Islam Negeri Malang* (pp. 1–17). Retrieved from http://repository.uinmalang.ac.id/800/2/koding.pdf
- Mairisiska, T., Sutrisno, & Asrial. (2014). Pengembangan Perangkat Pembelajaran Berbasis TPACK pada Materi Sifat Koligatif Larutan untuk Meningkatkan Keterampilan Berpikir Kritis Siswa. *Edu Sains*, 3(1), 28–37.
- Medina, P. (2017). Analisis Miskonsepsi Siswa kelas X pada Materi Larutan Elektrolit dan Non Elektrolit serta Reaksi Oksidasi dan Reduksi dalam Pembelajaran Kimia di SMAN 10 Kota Padang. *Journal Of Residu*, 1(1), 73–84.
- Mulyatiningsih, E. (2013). Metode Penelitian Terapan Bidang Pendidikan. Bandung: Penerbit Alfabeta.
- Nouri, J. (2016). The flipped classroom: for active, practical, and increased learning especially for low achievers. *International Journal of Educational Technology in Higher Education*, 13(1).
- Nurlaili, Bakar, A., & Afrida. (2019). Analisis Keterlaksanaan Model Pembelajaran Predict Observe Explain pada Materi Larutan Elektrolit dan Nonelektrolit dan Pengaruhnya terhadap Keterampilan Proses Sains Siswa. 11(1), 28–37.
- Pane, A., & Darwis Dasopang, M. (2017). Belajar Dan Pembelajaran. *FITRAH: Jurnal Kajian Ilmu-Ilmu Keislaman*, 3(2).
- Sitompul, H., Setiawan, D., & Purba, E. (2017). Pengaruh Media Pembelajaran dan Motivasi Belajar terhadap Hasil Belajar Desain Sistem Instruksional Pendekatan TPACK. Jurnal Teknologi Informasi & Komunikasi Dalam Pendidikan, 4(2), 141–146.
- Suari, N. N. J., Selamat, I. N., & Suja, I. W. (2018). Profil Model Mental Siswa Tentang Larutan Elektrolit Dan Nonelektrolit. *Jurnal Pendidikan Kimia Indonesia*, 2(2), 59–63.
- Suja, I. W. (2021). Keterampilan Proses Sains dan Instrumen Pengukurannya. Depok: RajaGrafindo Persada.
- Waluyo, E., & Nuraini, N. (2021). Pengembangan Desain Instruksional Model Inquiry Learning terintegrasi TPACK untuk Meningkatkan Kemampuan Pemecahan Masalah. 3(1), 1–11.
- Warsono, & Hariyanto. (2012). Pembelajaran Aktif dan Teori Assesment. Bandung: PT Remaja Rosdakarya.
- Wilandari, D. N., Ridwan, A., & Rahmawati, Y. (2018). Analisis Model Mental Siswa pada Materi Larutan Elektrolit dan Nonelektrolit: Studi Kasus di Pandeglang. Jurnal Riset Pendidikan Kimia, 8(2), 25–35.