Deteksi dan Identifikasi Pelaku Kecurangan Skema Pembagian Rahasia Linear Berbasis Skema Shamir

Zulkaidah Nur Ahzan(1*), Sugi Guritman(2), Bib Paruhum Silalahi(3)


(1) Universitas Timor
(2) Institut Pertanian Bogor
(3) 
(*) Corresponding Author

Abstract


The method that can be used to maintain security of secret in the form of cryptographic keys is by using secret sharing scheme (SSS). This method is first proposed by Adi Shamir in 1979, where the proposed scheme is a (k, n) threshold scheme. Shamir scheme is a perfect scheme under the assumption that all shareholders present their original share. However, if there are dishonest shareholders who present faked shares then the honest shareholders get nothing but a faked secret. Secret sharing scheme based on linear scheme is a scheme that can detect and identify cheaters who submit faked shares at the secret reconstruction. Detectability of this scheme when  and identifiability when  under the assumption that all shareholders present their shares randomly. After conducting a security analysis of the proposed scheme, it is obtained that to succeed in attack with cheaters who work together to fool honest shareholders then a new polynomial g(x) such that g(1) = , g(2) = , …, g(k - 1) =  and a new detector that has the same value as detector d are needed.


Keywords


kriptografi; skema pembagian rahasia; skema pembagian rahasia linear

Full Text:

PDF

References


Anton H, Rorres C. (2010). Elementary Linear Algebra: Application Version. (10thed.). New Jersey : John Wiley & Sons.

Barbeau, E.J. (2003). Polynomials. New York : Springer-Verlag.

Blakley, G.R. (1979). Safeguarding cryptographic keys. AFIPS Conference Proceedings : 1979 National Computer Conference Jun 4-7 1979. New York : AFIPS Press.

Cheney, W., Kincaid, D. (2008). Numerical Mathematics and Computing. (6thed.). Belmont : Thomson Brooks/Cole.

Harn, L. & Lin, C.L. (2009). Detection and identification of cheaters in ("t,n)" secret sharing scheme. Design, Codes and Criptography, 52(1), 15-24.

Leung, K.T., Mok, I.A.C., Suen, S.N. Polynomials and Equations. Hong Kong : Hong Kong University Press.

Liu, Y.X. (2016). Linear (k, n) secret sharing scheme with cheating detection. Security and Communication Network, 9(13), 2115-2121.

Liu, Y.X., Yang, C.N., Wang, Y.C., Zhu, L., & Ji, W.J. (2018). Cheating identifiable secret sharing scheme using symmetric bivariate polynomial”, dalam Information Science. Vol. 453, 21-29.

Menezes, A.J., van-Oorschot, P.C., Vanstone, S.A. 1996. Handbook of Applied Cryptography. Florida : CRC Press.

Shah MA. 2012. Fundamental theorem of algebra a study. IJCER 2(8), 297-317.

Shamir, A. (1979). How to share a secret. Communication of the ACM, 22(11), 612-613.


Article Metrics

Abstract view : 449 times
PDF - 80 times

DOI: https://doi.org/10.26714/jkpm.7.1.2020.27-41

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Jurnal Karya Pendidikan Matematika

Jurnal Karya Pendidikan Matematika | P-ISSN: 2339-2444 E-ISSN: 2549-8401

 

Creative Commons Licence

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Jurnal Karya Pendidikan Matematika | P-ISSN: 2339-2444 E-ISSN: 2549-8401