PENERAPAN METODE NEURAL NETWORK UNTUK MENGKLASIFIKASI KERUSAKAN BATANG ROTOR MOTOR INDUKSI MELALUI DATA SPEKTRUM ARUS

Osni Boimau, Iradiratu Diah PK, Belly Yan Dewantara, Daeng Rahmatullah

Abstract


Kerusakan batang rotor merupakan salah satu jenis kerusakan pada motor induksi yang dapat menyebabkan masalah serius. Kerusakan tersebut dapat mencapai 5% - 10% dari seluruh kasus gangguan motor induksi. Oleh karena itu perlu adanya prediksi awal untuk mengetahui adanya gangguan pada motor induksi, agar dapat dilakukan perbaikan lebih cepat dan tanggap sebelum terjadi kerusakan yang lebih parah. Pada penelitian ini membahas tentang klasifikasi kerusakan batang rotor motor induksi dengan menggunakan analisa arus stator. Data spectrum arus diambil mengunakan metode fast fourier transform. Eksperimen penelitian dilakukan menggunakan metode Neural Network sebagai alat bantu untuk mendeteksi sinyal kesalahan dari mesin listrik karena mampu mengenali pola setiap kerusakan pada batang rotor motor induksi. Pengujian sistem dilakukan untuk mementukan letak kerusakan dalam beberapa kondisi, yaitu kondisi rotor diambil dari hasil pendeteksian Fast Fourier Transform, kondisi beban diambil dari presentase pembebanan yakni 0%, 25%, 50%, 75%, 100% dan tingkat kerusakan motor diambil mulai dari kondisi batang rotor normal sampai rotor mengalami kerusakan 3BRB7mm. Hasil pengujian ini membuktikan bahwa metode Neural Network mampu mengklasifikasi setiap kondisi kerusakan batang rotor motor induksi dengan membuktikan dari hasil Mean Squared Error MSE yang dihasilkan memiliki nilai rata-rata pada semua kondisi kerusakan sebesar 5.84 . Dengan rata-rata efisiensi pengujian dibawah 5%

Keywords


Analisis arus stator, Kerusakan, Fast Fourier Transform (FFT), Neural Network(NN), Motor induksi

Full Text:

PDF

Article Metrics

Abstract view : 34 times
PDF - 5 times

DOI: https://doi.org/10.26714/me.13.1.2020.12-23

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 MEDIA ELEKTRIKA



MEDIA ELEKTRIKA  |  p-ISSN: 1979-7451 | e-ISSN: 2579-972X

STATS COUNTER 

Creative Commons License
This works is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.