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Abstract: Poisson regression is commonly used in modeling 
count data in various research fields. An essential assumption 
must be met when using Poisson regression, which is that the 
count data of the response has the mean and variance must be 
equal, namely equip-dispersion. This assumption is often unmet 
because many data for the response that the variance is greater 
than the mean, called over-dispersion. If the Poisson regression 
model contains the over-dispersion, then will be produced an 
invalid model can under-estimate standard errors and 
misleading inference for regression parameters. Therefore, an 
approach is needed to overcome the over-dispersion problem in 
Poisson regression. The generalized Poisson regression can 
handle the over-dispersion in Poisson regression. This study 
aims to obtain the generalized Poisson regression model and the 
factors affecting the low birth weight in Indonesia in 2021. The 
result shows that the factors affecting the low birth weight in 
Indonesia based on the generalized Poisson regression model 
were: poverty rate, percentage of households with access to 
appropriate sanitation, percentage of pregnant women at risk of 
chronic energy deficiency receiving additional food, percentage 
of pregnant women who received blood-boosting tablets, and 
percentage of antenatal care.      

  

1. INTRODUCTION  

Poisson regression is widely used in modelling count data. Count data is one type of 
statistical data that shows the number of events over a particular time and can only be positive 
[1]. An essential assumption must be met in Poisson regression modelling; namely, the mean 
and variance of the response must be equal, called equid-dispersion [2]. This assumption is 
often unmet because, in many data in various research fields, the variance is greater than the 
mean, called over-dispersion. An invalid model can underestimate standard errors and 
misleading inferences for regression parameters [1]. Therefore, an approach is needed to 
overcome the over-dispersion problem in Poisson regression. The generalized Poisson 
regression is an alternative approach for handling it [2]. 

Several studies that model count data with over-dispersion using generalized Poisson 
regression have been proposed. The maximum likelihood and moment methods were used to 
estimate the generalized Poisson regression model parameters. In contrast, the significance test 
of the parameters was used by the likelihood ratio test method [3]. The restricted generalized 
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Poisson regression model was developed [4]. The generalized Poisson regression model was 
applied to model the infant mortality rate [5]. 

The generalized Poisson regression in this study was applied to model the factors 
affecting the low birth weight in Indonesia, in 2021. The modelling of low birth weight using 
the Poisson regression shows any over-dispersion problem. Low birth weight is a birth weight 
of fewer than 2500 grams. Low birth weight has always been a significant public health 
problem globally and is associated with various of short- and long-term consequences. Overall, 
15 to 20 percent of all births worldwide are estimated to be low birth weight, representing more 
than 20 million births annually. WHO has committed to monitoring the progress of global 
change and supporting global targets to improve maternal, infant and child nutrition through 
six global nutrition targets by 2025. One of them is the third target which aims to achieve a 30 
percent reduction in body weight and low birth weight by 2025. It means a target of a relative 
reduction of 3 percent per year between 2012 and 2025, namely a decrease from about 20 
million to around 14 million babies with low birth weight [6]. 

A baby's weight at birth is the most crucial determinant of the chances of survival, 
growth, and development in the future. Mothers who continually maintain their health by 
consuming nutritious food and adopting a good lifestyle will give birth to healthy babies. In 
contrast, mothers who experience nutritional deficiencies have a risk of giving birth to babies 
with low body weight. The low birth weight reflects the health and nutrition situation and 
shows the level of survival and psychosocial development [7]. Babies with low birth weight 
have a higher risk of experiencing death, growth retardation, and development during 
childhood than babies who are not low birth weight [8]. Some of the factors that cause low 
birth weight are pregnant women experiencing chronic energy shortages, poor antenatal care, 
poverty, and poor sanitation [9], [10], [11].  

This study aims to obtain the generalized Poisson regression model, the factors 
affecting modelling count data with overdispersion, and its application in low birth weight in 
Indonesia, in 2021. Following [3], [12], [13], [14], the Poisson regression and generalized 
Poisson regression models can be obtained by the maximum likelihood and Fisher-scoring 
methods. In contrast, the test of significant parameters of the Poisson regression and 
generalized Poisson regression models can be used by the likelihood ratio test and Wald test 
methods.  

 
2. LITERATURE REVIEW 
2.1. Low Birth Weight 

Low birth weight is a baby born weighing less than 2,500 grams. Low birth weight 
consists of low birth weight (1,500-2,499 grams), very low birth weight (1,000-1,499 grams), 
and extremely low birth weight (< 1,000 grams). 60 to 80 percent of the infant mortality rate is 
due to low birth weight. Low birth weight has a greater risk of experiencing morbidity and 
mortality than babies born with normal weight. A gestation period of less than 37 weeks can 
cause complications in the baby due to the imperfect growth of the organs in the body. The 
lower the baby's weight, the more crucial it is to monitor its development in the weeks after 
birth. Low birth weight can be caused by two factors: premature birth and Intra Uterine Growth 
Restriction (IUGR), commonly called impaired fetal growth. Low birth weight can cause 
morbidity and even death [7].  
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2.2. Poisson Regression 
Poisson regression is a nonlinear parametric regression model. The response of Poisson 

regression model (𝑌) follows the Poisson distribution, which has the probability mass function 
defined as [2]: 

 

𝑃(𝑌 = 𝑦|𝜇!) =
exp(𝜇!) 𝜇!

"

𝑦! , 𝑦 = 0,1,2, … 
(1) 

  
where 𝜇! is the parameter and 𝜇! > 0. 𝐸(𝑌) = 𝜇! and (𝑌) = 𝜇!, respectively, symbolize the 
mean and variance of the Poisson distribution. 

Suppose there are covariates namely 𝑋!, 𝑋#, … , 𝑋$, then the Poisson regression model 
can be written as follows [2]: 

 

 𝜁!(𝐱) = log(𝜇!) = log[exp(𝐱%𝛉!)] = 𝐱%𝛉! (2) 

  
where 𝜇! is the mean of response. 𝐱% = [𝑋& 𝑋! 𝑋# ⋯ 𝑋$] is the vector of covariates 
with 𝑋& = 1. 𝛉! = [𝜃!& 𝜃!! 𝜃!# ⋯ 𝜃!$]% is the vector of regression parameters. 𝑘 is the 
number of covariates. 𝜁!(𝐱) is the link function that depends on the covariates [15]. 

The Poisson regression model in Equation (2) can be obtained by estimating the model’s 
parameter using the maximum likelihood method. The estimation begins with obtaining the 
likelihood and log-likelihood functions as follows: 

 

ℒ(𝛉!) =A𝑃(𝑌' = 𝑦'|𝐱' , 𝛉!)
(

')!

=AB
exp(− exp(𝐱'%𝛉!)) (exp(𝐱'%𝛉!))"!

𝑦'!
D

(

')!

 
(3) 

ℓ(𝛉!) = log[ℒ(𝛉!)] = F[𝑦'𝐱'%𝛉! − exp(𝐱'%𝛉!) − log(𝑦'!)]
(

')!

. 
(4) 

 
It maximizes the log-likelihood function in Equation (4) by determining the first partial 

derivative of the log-likelihood function with respect to the estimated parameter and then 
equating it with zero, 

 

𝜕ℓ(𝛉!)
𝜕𝛉!

= −FI𝐱'%J𝑦' − expJ𝐱'%𝛉K!LLM
(

')!

= 𝟎. 
(5) 

 
Based on Equation (5), the result of the first partial derivative of the log-likelihood 

function with respect to the estimated parameters produces an implicit function. Therefore, a 
numerical approach is needed to obtain the maximum likelihood estimator of the PR model 
parameters. One numerical approach is the Fisher-scoring method [12]. The Fisher-scoring 
algorithm for obtaining the maximum likelihood estimator of the Poisson regression model 
parameters is as follows: 
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1) Determine the initial value for 𝛉K!, namely 𝛉K!
(&) = I𝜃O!&

(&) 𝜃O!!
(&) 𝜃O!#

(&) ⋯ 𝜃O!$
(&)M

%
. 

2) Determine the tolerance value, symbolized by 𝛿 for the iteration process stopping. 
3) Start the iteration process using the following formula: 
4)  

𝛉K!
(,-!) = 𝛉K!

(,) + 𝐈.!S𝛉K!
(,)T𝐠S𝛉K!

(,)T, 𝑢 = 0,1,2, … (6) 

 
where 𝐠(𝛉!) is the gradient vector, which has the elements in Equations (5). 𝐈(𝛉!) is the 
information matrix and expressed as 
 

𝐈(𝛉!) = 𝐸 B−
𝜕#ℓ(𝛉!)
𝜕𝛉!𝜕𝛉!%

D, 

 
where the 𝜕#ℓ(𝛉!) 𝜕𝛉!𝜕𝛉!%⁄  is the second partial derivative of the log-likelihood function with 
respect to the estimated parameters as follows: 
 

𝜕#ℓ(𝛉!)
𝜕𝛉!𝜕𝛉!%

=F[𝐱𝑖𝑇𝐱𝑖 exp(𝐱𝑖𝑇𝛉!)]
𝑛

𝑖=1

. 

 

 

5) The iteration process stops at the 𝑢-th iteration when converged, namely X𝛉K!
(,-!) −

𝛉K!
(/)X ≤ 𝛿, where 𝛿 is the smallest positive number. The estimator values of the Poisson 

regression model parameters are obtained in the last iteration.    
Following [13], the estimate for the variance-covariance matrix of 𝛉! is 𝐶𝑜𝑣J𝛉K!L = I𝑰J𝛉K!LM

.!. 
The 𝐶𝑜𝑣J𝛉K!L value can be used on the significance test of the Poisson regression model 
parameters below. 

The significance test on the Poisson regression model parameters aims to get the 
covariates affecting the response simultaneously and partially. The likelihood ratio test method 
is applied to the simultaneous test using the hypotheses:  

𝐻&: 𝜃!! = 𝜃!# = ⋯ = 𝜃!$ = 0 

𝐻!: at	least	one	of	𝜃!0 ≠ 0, 𝑗 = 1,2, … , 𝑘. 
(7) 

The test statistic used to test the hypothesis in Equation (7) is Wilk's lambda statistic 
which can be obtained by the likelihood ratio test method, and is formulated as follows [13]. 

 

𝐺!# = −2 log Λ! = 2IℓJΩK!L − ℓ(𝜔l!)M (8) 
 
where ℓ(𝜔l!) is the maximum value of the log-likelihood function for the set of model 
parameters under the null hypothesis (𝐻&) and ℓJΩK!L is the maximum value of the log-
likelihood function for the set of model parameters under the population are as follows:  
 

ℓ(𝜔l!) =FI𝑦'𝜃O!& − expJ𝜃O!&L − log(𝑦'!)M
(

')!
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ℓJΩK!L =FI𝑦'𝐱'%𝛉K! − expJ𝐱'%𝛉K!L − log(𝑦'!)M
(

')!

. 

 
Wilk's lambda statistic in Equation (8) is asymptotically chi-square distributed [16]. 

Therefore, the rejected region of 𝐻& (the critical region) on the significance level (𝛼) to test 
the hypothesis in Equation (7) is the null hypothesis rejected if the value of 𝐺!# greater than the 
value of 𝜒(1,$")

#  or the null hypothesis is rejected when the 𝑝-value is less than the 𝛼 value. 𝑘! 
is the degree of freedom being the difference between the number of model parameters under 
the population and the null hypothesis, namely 𝑘! = (𝑘 + 1) − 1 = 𝑘 [13].       

The parameter hypothesis testing carried out after the simultaneous test is a partial test. 
The hypothesis used for the partial test is: 

𝐻&: 𝜃!0 = 0 

𝐻!:	𝜃!0 ≠ 0, 𝑗 = 1,2, … , 𝑘. 
(9) 

The test statistic for testing the hypothesis in Equation (9) is Wald's statistic, formulated 
as follows [13]. 

 

𝑊! =
𝜃O!0

𝑆𝐸rJ𝜃O!0L
 (10) 

 

where 𝜃O!0 is the estimated value of the maximum likelihood parameter of the Poisson 
regression model obtained by the Fisher-scoring method in Equation (6). 𝑆𝐸rJ𝜃O!0L =

I𝑉OJ𝜃O!0LM
! #⁄  is the maximum likelihood standard error estimate of the parameter of the Poisson 

regression model obtained from the main diagonal elements of the variance-covariance matrix, 
𝐶𝑜𝑣I𝛉K!M = 𝐈.!I𝛉K!M where 𝐈I𝛉K!M is the Fisher information matrix [13]. 

Wald's statistic in Equation (10) is asymptotically standard normal distributed [16] so 
that the critical region at the significance level to test the hypothesis in Equation (9) is the null 
hypothesis is rejected if the value of |𝑊!| is greater than the value of 𝑍1 #⁄  or the null hypothesis 
is rejected if the 𝑝-value is less than the 𝛼 value. 
2.3. Over-dispersion 

Over-dispersion is one of the most common problems in Poisson regression. The 
Poisson regression assumes the count data has the same variance value as its mean (equi-
dispersion) [5]. Sometimes the count data contains over-dispersion, shown by the variance 
greater than the mean, namely 𝑉(𝑌) > 𝐸(𝑌). Over-dispersion occurs due to unobserved 
sources of variability in the data or the effect of other variables that result in the probability of 
an event occurring depending on previous events. Over-dispersion can lead to underestimating 
the standard error, resulting in under-estimated parameters and the significance of the covariate 
effect being over-estimated. Over-dispersion in Poisson regression can be detected by the 
deviance divided by the degrees of freedom. If the value is greater than one, it is shown that 
there is over-dispersion [1]. 
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2.4. Generalized Poisson Regression 

Generalized Poisson regression is a development of the Poisson regression model. The 
generalized Poisson regression model can deal with under-dispersion and over-dispersion 
problems in Poisson regression [2]. The response (𝑌) of the generalized Poisson regression 
model has a generalized Poisson distribution with the probability mass function defined as 
follows [17]: 

 

𝑃(𝑌 = 𝑦|𝜇#, 𝜆) = v
𝜇#

1 + 𝜆𝜇#
w
"
B
(1 + 𝜆𝑦)".!

𝑦! D exp B
−𝜇#(1 + 𝜆𝑦)
1 + 𝜆𝜇#

D , 𝑦 = 0,1,2, … 
(11) 

 
where 𝜇# and 𝜆 are the parameters, for 𝜇# > 0 and 𝜆 > 0. 𝐸(𝑌) = 𝜇# and 𝑉(𝑌) =
𝜇#(1 + 𝜆𝜇#)#, respectively define the mean and variance of the generalized Poisson 
distribution. 

Based on Equation (11), the generalized Poisson regression model can be written as 
follows [3]: 

 

 𝜁#(𝐱) = log(𝜇#) = log[exp(𝐱%𝛉𝟐)] = 𝐱%𝛉𝟐 (12) 
 
where 𝜁#(𝐱) is the log link function that depends on the covariates. 𝛉𝟐 is the parameter vector, 
and 𝐱%is the vector of covariates, which are defined by 𝛉𝟐 = [𝜃#& 𝜃#! 𝜃## ⋯ 𝜃#$]% and 
𝐱% = [1 𝑋! 𝑋# ⋯ 𝑋$], respectively.  

The generalized Poisson regression model in Equation (12) can be obtained by 
estimating the model parameters using the maximum likelihood method [7]. The initial step is 
forming the likelihood and log-likelihood functions. Suppose 𝛉 = [𝜆 𝛉#%]%, then the 
likelihood and log-likelihood functions are formulated as follows: 

 

ℒ(𝛉) =A𝑃(𝑌' = 𝑦'|𝐱' , 𝜆, 𝛉𝟐)
(

')!

 
 

										=Axv
𝜇#'

1 + 𝜆𝜇#'
w
"!
B
(1 + 𝜆𝑦')"!.!

𝑦'!
D exp B

−𝜇#'(1 + 𝜆𝑦')
1 + 𝜆𝜇#'

Dy ,
(

')!

 
(13) 

ℓ(𝛉) = log[ℒ(𝛉)]  

										=Flog xv
𝜇#'

1 + 𝜆𝜇#'
w
"!
B
(1 + 𝜆𝑦')"!.!

𝑦'!
D exp B

−𝜇#'(1 + 𝜆𝑦')
1 + 𝜆𝜇#'

Dy
(

')!

 
 

										=F{𝑦'[log(exp(𝐱'%𝛉𝟐)) − log(1 + 𝜆 exp(𝐱'%𝛉𝟐))] + (𝑦' − 1) log(1 + 𝜆𝑦')
(

')!

 
 

																								− log(𝑦'!) −
exp(𝐱'%𝛉𝟐) (1 + 𝜆𝑦')
1 + 𝜆 exp(𝐱'%𝛉𝟐)

y. 
(14) 
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The next step is maximizing the log-likelihood function in Equation (14) by 
determining the first partial derivative of the log-likelihood function for the estimated 
parameters is then equated to zero,  

 

			
𝜕ℓ(𝛉)
𝜕𝛉#

=Fx𝑦'𝐱'% −
𝜆𝑦'𝐱'% exp(𝐱'%𝛉𝟐)
1 + 𝜆 exp(𝐱'%𝛉𝟐)

+ B
𝐱'% exp(𝐱'%𝛉𝟐) (1 + 𝜆𝑦')
(1 + 𝜆 exp(𝐱'%𝛉𝟐))

D
(

')!

 
 

																													× B
𝜆 exp(𝐱'%𝛉𝟐)

(1 + 𝜆 exp(𝐱'%𝛉𝟐))
− 1Dy = 𝟎, 

(15) 

𝜕ℓ(𝛉)
𝜕𝜆 =Fx

𝑦'(𝑦' − 1)
1 + 𝜆𝑦'

+
exp(𝐱'%𝛉𝟐)

(1 + 𝜆 exp(𝐱'%𝛉𝟐))
B
(1 + 𝜆𝑦') exp(𝐱'%𝛉𝟐)
(1 + 𝜆 exp(𝐱'%𝛉𝟐))

− 2𝑦'Dy
(

')!

= 𝟎. 
(16) 

 
The maximum likelihood parameter estimator of the generalized Poisson regression 

model in Equations (15) and (16) is an implicit function. Therefore, the maximum likelihood 
estimator cannot be obtained explicitly and requires a numerical approach. As in the Poisson 
regression model, a numerical approach with the Fisher-scoring method is used to obtain the 
maximum likelihood parameter estimator of the generalized Poisson regression model. The 
Fisher-scoring algorithm used is as follows: 
1) Determine the initial value for 𝛉K(&).   
2) Determine the value of gradient vector, 𝐠I𝛉K(,)M.    
3) Determine the value of Fisher information matrix inverse, 𝐈.!I𝛉K(,)M.    
4) Carry out the Fisher-scoring iteration process using the following formula: 

 
𝛉K(,-!) = 𝛉K(,) + 𝐈.!I𝛉K(,)M𝐠I𝛉K(,)M, 𝑢 = 0,1,2, … (17) 

 
where 𝐠(𝛉) is the gradient vector, which has the elements in Equations (15) and (16). 𝐈(𝛉) 
is the information matrix and defined as 
 

𝐈(𝛉) = 𝐸 B−
𝜕#ℓ(𝛉)
𝜕𝛉𝜕𝛉% D, 

 
where the 𝜕#ℓ(𝛉) 𝜕𝛉𝜕𝛉%⁄  is the second partial derivative of the log-likelihood function 
with respect to the estimated parameters as follows: 
 

							
𝜕#ℓ(𝛉)
𝜕𝛉#𝜕𝛉#%

=FxB
𝜆𝑦'𝐱'%𝐱' exp(𝐱'%𝛉#)
(1 + 𝜆 exp(𝐱'%𝛉#))

D B
𝜆 exp(𝐱'%𝛉#)

(1 + 𝜆 exp(𝐱'%𝛉#))
− 1D

(

')!

 
 

																																				+ B
𝐱'%𝐱' exp(𝐱'%𝛉#) (1 + 𝜆𝑦')

(1 + 𝜆 exp(𝐱'%𝛉#))
D B

𝜆 exp(𝐱'%𝛉#) − 1
(1 + 𝜆 exp(𝐱'%𝛉#))

D 
 

																																				× B
1

(1 + 𝜆 exp(𝐱'%𝛉#))
Dy, 

(18) 
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𝜕#ℓ(𝛉)
𝜕𝜆# =Fx−

𝑦'#(𝑦' − 1)
(1 + 𝜆𝑦')#

+ B
exp(2𝐱'%𝛉#)

(1 + 𝜆 exp(𝐱'%𝛉#))#
D

(

')!

 
 

																																				× B𝑦' −
2(1 + 𝜆𝑦') exp(𝐱'%𝛉#)
(1 + 𝜆 exp(𝐱'%𝛉#))

Dy. 
(19) 

  

5) The iteration process stops when convergent conditions are met, namely |𝛉K(,-!) −
𝛉K(,)| ≤ 𝛿, where 𝛿 is the smallest positive number. The maximum likelihood parameter 
estimator of the generalized Poisson regression model was obtained from the last iteration.   

If the maximum likelihood parameter estimator of the generalized Poisson regression 
model has been obtained, then parameter hypothesis testing can be carried out. This test 
consists of a simultaneous test and a partial test. The simultaneous test is used to determine the 
effect of the covariates on the response simultaneously. In contrast, the partial test is used to 
determine the effect of each covariate on the response individually. The hypothesis for the 
simultaneous test is: 

𝐻&: 𝜃#! = 𝜃## = ⋯ = 𝜃#$ = 0 

𝐻!: at	least	one	of	𝜃#0 ≠ 0, 𝑗 = 1,2, … , 𝑘. 
(20) 

The test statistic used to test the hypothesis in Equation (20) is Wilk's lambda statistic 
(𝐺##) which can be obtained by the likelihood ratio test method and is formulated as follows 
[2]: 

 

𝐺## = −2 log Λ# = 2IℓJΩK#L − ℓ(𝜔l#)M (21) 
 
where ℓ(𝜔l#) and ℓJΩK#L are the values of maximum log-likelihood function under the null 
hypothesis and population, respectively. The ℓ(𝜔l#) and ℓ(𝜔l#) are obtained by: 
 

ℓ(𝜔l#) =FI𝑦'𝜃O#& − expJ𝜃O#&L − log(𝑦'!)M
(

')!

 

ℓJΩK#L =FI𝑦'𝛉K#%𝐱' − exp(𝐱'%𝛉𝟐) − log(𝑦'!)M
(

')!

. 

 
Wilk’s lambda (𝐺##) statistic in Equation (21) is asymptotically chi-square distributed 

[16]. Therefore, the critical region of the null hypothesis in Equation (20) on the significance 
level (𝛼) is rejected when the 𝐺## statistic value is greater than the 𝜒(1,$#)

#  value (i.e., 𝐺## >
𝜒(1,$#)
# ) or the 𝑝-value is less than 𝛼, where 𝑘# is the degrees of freedom, which is 𝑘# =
(𝑘 + 2) − 2 = 𝑘.   

The next test is the partial test. The Wald test method is used for this test that has the 
hypothesis is: 

𝐻&: 𝜃#0 = 0 

𝐻!:	𝜃#0 ≠ 0, 𝑗 = 1,2, … , 𝑘. 
(22) 
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The statistical test for testing the hypotheses in Equation (22) is Wald statistic, and 
formulated by  

 

𝑊# =
𝜃O#0

𝑆𝐸rJ𝜃O#0L
 (23) 

 

where 𝜃O#0 is the estimated value of the maximum likelihood parameter of the generalized 
Poisson regression model obtained by the Fisher-scoring method in Equation (17). 𝑆𝐸rJ𝜃O#0L =

I𝑉OJ𝜃O#0LM
! #⁄  is the standard error estimated value of the maximum likelihood parameter of the 

generalized Poisson regression model obtained from the main diagonal elements of the 
variance-covariance matrix, 𝐶𝑜𝑣I𝛉K#M = 𝐈.!I𝛉K#M where 𝐈I𝛉K#M is the Fisher information matrix 
[13]. 

The Wald statistic (𝑊#) in Equation (23) is asymptotically standard normal distributed 
[16] so that the critical region at the significance level (𝛼) to test the hypothesis in Equation 
(22) is the null hypothesis is rejected when the value of 𝑊# is greater than the value of 𝑍1 #⁄  
(i.e., |𝑊#| > 𝑍1 #⁄ ) or the null hypothesis is rejected when the 𝑝-value is less than the 𝛼 value. 

 
3. METHODOLOGY 

3.1.  Data Sources 
The data in this study is secondary data obtained from the Ministry of Health of the 

Republic of Indonesia [18] and the Central Statistics Agency of the Republic of Indonesia [19]. 
This research unit is all provinces in Indonesia in 2021, namely 34 provinces.    

3.2.  Research Variables 

The research variables used in this study contain the response (𝑌) and the covariates 
J𝑋0L, for 𝑗 = 1,2, … ,8, which are presented in Table 1.   

Table 1. Research Variables 
Variables Variables Description Variables Type 

𝑌 Low birth weight in Indonesia Discrete 
𝑋& Poverty rate Continuous 
𝑋' Percentage of households occupying livable houses Continuous 
𝑋( Percentage of food processing places that meet the 

requirements according to the standard 
Continuous 

𝑋) Percentage of households that have access to safe 
drinking water 

Continuous 

𝑋* Percentage of households that have access to proper 
sanitation 

Continuous 

𝑋+ Percentage of pregnant women at risk of chronic 
energy deficiency receiving additional food 

Continuous 

𝑋, Percentage of pregnant women who received blood-
boosting tablets 

Continuous 

𝑋- Percentage of antenatal care Continuous 
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3.3. Data Analysis Techniques 

The techniques of data analysis in this study are as follows: 
1. Analyzing the statistical description of the research variables. 
2. Detecting the multicollinearity of covariates. 
3. Modeling the low birth weight in Indonesia using Poisson regression. 
4. Detecting over-dispersion. 
5. Modeling the low birth weight in Indonesia using generalized Poisson regression. 
6. Getting the factors that affect the low birth weight in Indonesia. 
7. Interpreting the generalized Poisson regression model of low birth weight in Indonesia. 
8. Getting the conclusions.    
 

4. RESULTS AND DISCUSSION 
 

4.1. Statistical Descriptive Analysis 
Analyzing and modeling the low birth weight in Indonesia using generalized Poisson 

regression begins with the descriptive statistical analysis of research variables. The results are 
shown in Table 2. 

Table 2. Statistical Descriptive Results of Research Variables 

Variables Mean Standard Deviation Maximum Minimum 
𝑌 3,286 4,775 22,574 177 
𝑋& 10.76 5.40 26.86 4.53 
𝑋' 60.14 12.16 85.15 27.60 
𝑋( 51.59 13.88 81.10 16.50 
𝑋) 86.68 8.46 99.86 64,92 
𝑋* 80.97 9.93 97.12 40,81 
𝑋+ 90.00 12.57 100 42.20 
𝑋, 79.46 11.43 92.6 37.20 
𝑋- 81.31 16.45 100 13.00 

 
Table 1 shows that Indonesia’s average low birth weight in 2021 was 3,286, with a 

standard deviation of 4,775. The highest and lowest, 22,574 and 177, were found in West Java 
Province and North Sulawesi Province, respectively. One of the reasons for the high low birth 
weight in West Java Province compared to North Sulawesi Province is the larger population in 
West Java Province. The visualization of the distribution of low birth weight in Indonesia in 
2021 is presented in Figure 1.  
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Fig 1. Distribution of Low Birth Weight in Indonesia in 2021  

 
4.2. Detecting Multicollinearity 

Multicollinearity is a problem in the generalized Poisson regression modeling; namely, 
the covariates are correlated to each other. This study’s multicollinearity detection uses the 
Variance Inflation Factor (VIF) [20]. The generalized Poisson regression model has a 
multicollinearity problem when the VIF value of covariates is greater than 10. The VIF value 
of all covariates given in Table 3 shows that all covariates have a VIF value of less than 10. 
Therefore, there is no multicollinearity, and all of covariates can model low birth weight using 
the generalized Poisson regression model. 

Table 3. The VIF Values of Covariates 
Covariates VIF Values 

𝑋& 2.2160 

𝑋' 1.7668 

𝑋( 1.1652 

𝑋) 1.9131 
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Covariates VIF Values 

𝑋* 2.3129 

𝑋+ 1.8983 

𝑋, 2.5916 

𝑋- 2.7612 

 

4.3. Modeling Low Birth Weight Using Poisson Regression 
The modeling of low birth weight in Indonesia in 2021 using Poisson regression begins 

with estimating and significance testing of the Poisson regression model parameters, were 
displayed in Table 4. 

Table 4. Parameter Estimates, Standard Error, and Statistical Test Values of the Partial 
Test for the Poisson Regression Model 

Parameter Estimate Standard Error 𝑊& 𝑝-value 

𝜃&. 1.7986 0.0746 24.1099 < 2 × 10-16* 

𝜃&& 0.0524 0.0008 65.5 < 2 × 10-16* 

𝜃&' 0.0067 0.0005 13.4 < 2 × 10-16* 

𝜃&( -0.0011 0.0002 -5.5 7.54 × 10-7* 

𝜃&) 0.0433 0.0005 86.6 < 2 × 10-16* 

𝜃&* -0.0573 0.0006 -95.5 < 2 × 10-16* 

𝜃&+ -0.0266 0.0004 -66.5 < 2 × 10-16* 

𝜃&, 0.0585 0.0005 117 < 2 × 10-16* 

𝜃&- 0.0446 0.0005 89.2 < 2 × 10-16* 

*) Indicates significance at the significance level, 𝛼 = 0.1. 

Based on Table 4, the Poisson regression model was obtained, and can be written as 
follows: 

 
𝜁~!(𝐱) = 1.7986 + 0.0524𝑋! + 0.0067𝑋# − 0.0011𝑋5 + 0.0433𝑋6  

−0.0573𝑋7 − 0.0266𝑋8 + 0.0585𝑋9 + 0.0446𝑋:. (24) 
 
The simultaneous influence of the hypothesis was carried out using Wilk’s lambda 

statistic in Equation (8). The hypothesis was formulated as follows: 
𝐻&: 𝜃!! = 𝜃!# = ⋯ = 𝜃!: = 0 
𝐻!: at	least	one	of	𝜃!0 ≠ 0, 𝑗 = 1,2, … ,8.  

The Wilk’s lambda statistic value was 80,105.23, and the 𝜒(1,$")
#  value was 13.3616 

with a 𝑝-value was less than 0.001 (i.e.,	𝑝 < 0.001). Therefore, the null hypothesis was rejected 
and it can be concluded that the poverty rate, percentage of households occupying livable 
houses, percentage of food processing places that meet the requirements according to the 
standard, percentage of households that have access to safe drinking, percentage of households 
that have access to proper sanitation, percentage of pregnant women at risk of chronic energy 
deficiency receiving additional food, percentage of pregnant women who received blood-
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boosting tablets, and percentage of antenatal care were simultaneously significantly 
influencing the low birth weight in Indonesia. 

The partial test was used to obtain covariates that significantly influencing the low birth 
weight in Indonesia. This test was employed by the Wald statistic in Equation (10), which has 
the hypotheses as follows:  

𝐻&: 𝜃!0 = 0 
𝐻!:	𝜃!0 ≠ 0, 𝑗 = 1,2, … ,8.  

Based on Table 4, the Wald statistic value for all parameters (|𝑊!|) was more than the 
value of 𝑍1 #⁄ , and the 𝑝-value for all parameters was less than the 𝛼 value. Therefore, the null 
hypothesis was rejected, and the conclusion was poverty rate, percentage of households 
occupying livable houses, percentage of food processing places that meet the requirements 
according to the standard, percentage of households that have access to safe drinking, 
percentage of households that have access to proper sanitation, percentage of pregnant women 
at risk of chronic energy deficiency receiving additional food, percentage of pregnant women 
who received blood-boosting tablets, and percentage of antenatal care were partially 
significantly influencing the low birth weight in Indonesia. 

4.4. Detecting Over-dispersion 
Overdispersion detection is done by comparing the variance value of the response to 

the average value and the deviation value of the Poisson regression model divided by the degree 
of freedom. If the variance value of the response is more than the average value, then 
overdispersion occurs. Meanwhile, if the value of the deviation divided by the value of degrees 
of freedom is more than 1, then overdispersion occurs. Based on the descriptive statistical 
analysis result in Table 2, the variance value of low birth weight was 22,797,386 and the 
average value was 3,286. Since the variance value is more than the average value, 
overdispersion occurs. Based on the results of Poisson regression modeling, the deviance value 
was 58,108.76, and the degrees of freedom value was 25. The deviance divided by the degrees 
of freedom were more than 1. These results indicate overdispersion and show that there is 
overdispersion in Poisson regression. 

4.5. Modeling Low Birth Weight Using Generalized Poisson Regression 
Since there is a problem of overdispersion in Poisson regression, the modeling of low 

birth weight in Indonesia in 2021 needs to be adequately modeled using Poisson regression. 
Therefore, generalized Poisson regression is one of the appropriate models to model. The result 
of modeling low birth weight in Indonesia in 2021 using generalized Poisson regression is 
presented in Table 5. 

 
Table 5. Parameter Estimates, Standard Error, and Statistical Test Values of the Partial 

Test for the Generalized Poisson Regression Model 
Parameter Estimate Standard Error 𝑊# 𝑝-value 

𝜃'. 4.4497 1.9240 2.3127 0.0207* 

𝜃'& 0.0494 0.0278 1.7770 0.0758* 

𝜃'' -0.0014 0.0116 -0.1207 0.9066 

𝜃'( 0.0012 0.0077 0.1558 0.8743 
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Parameter Estimate Standard Error 𝑊# 𝑝-value 

𝜃') 0.0246 0.0163 1.5092 0.1324 

𝜃'* -0.0340 0.0162 -2.0988 0.0355* 

𝜃'+ -0.0193 0.0116 -1.6638 0.0948* 

𝜃', 0.0374 0.0149 2.5101 0.0124* 

𝜃'- 0.0291 0.0110 2.6455 0.0080* 

*) Indicates significance at the significance level, 𝛼 = 0.1. 

 
The generalized Poisson regression can be obtained based on the parameter estimates 

results in Table 5, and it was expressed as follows: 
 
𝜁~#(𝐱) = 4.4497 + 0.0494𝑋! − 0.0014𝑋# + 0.0012𝑋5 + 0.0246𝑋6  

−0.0340𝑋7 − 0.0193𝑋8 + 0.0374𝑋9 + 0.0291𝑋:. (25) 
 
The simultaneous influence of the hypothesis was carried out using Wilk’s lambda 

statistic in Equation (21). The hypothesis was formulated as follows: 
𝐻&: 𝜃#! = 𝜃## = ⋯ = 𝜃#: = 0 
𝐻!: at	least	one	of	𝜃#0 ≠ 0, 𝑗 = 1,2, … ,8.  

Wilk’s lambda statistic value was 15.0237, and the 𝜒(1,$#)
#  value was 13.3616 with a 𝑝-

value of 0.0587. Therefore, the null hypothesis was rejected, and the conclusion was poverty 
rate, percentage of households occupying livable houses, percentage of food processing places 
that meet the requirements according to the standard, percentage of households that have access 
to safe drinking, percentage of households that have access to proper sanitation, percentage of 
pregnant women at risk of chronic energy deficiency receiving additional food, percentage of 
pregnant women who received blood-boosting tablets, and percentage of antenatal care were 
simultaneously significantly influencing the low birth weight in Indonesia. 

The partial test was used to obtain covariates significantly influencing the low birth 
weight in Indonesia. The Wald statistic in Equation (23) was applied in this test, which has the 
hypothesis as follows:  
𝐻&: 𝜃#0 = 0 
𝐻!:	𝜃#0 ≠ 0, 𝑗 = 1,2, … ,8.  

The Wald statistic value (|𝑊#|) of the parameters of 𝜃#!, 𝜃#7, 𝜃#8, 𝜃#9, and 𝜃#: in Table 
5 was greater than the value of 𝑍1 #⁄  with the 𝑝-value was less than the 𝛼 value. Therefore, the 
null hypothesis was rejected, and the conclusion was poverty rate, percentage of households 
that have access to proper sanitation, percentage of pregnant women at risk of chronic energy 
deficiency receiving additional food, percentage of pregnant women who received blood-
boosting tablets, and percentage of antenatal care were partially significantly influencing the 
low birth weight in Indonesia. 

Finally, the interpretation of the generalized Poisson regression model in Equation (25), 
especially for the significant covariates are as follows: 

1) If the poverty rate (𝑋!) increases by 1%, the average low birth weight will increase by 
exp(0.0494) or 1.0506 times, where the other covariates are fixed. 
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2) If the percentage of households with access to proper sanitation (𝑋7) increases by 1%, then 
the average low birth weight will decrease by exp(-0.0340) or 0.9666 times, where the 
other covariates are fixed. 

3) If the percentage of pregnant women at risk of chronic energy deficiency receiving 
additional food (𝑋8) increases by 1%, then the average of low birth weight will decrease 
by exp(-0.0193) or 0.9809 times, where the other covariates are fixed. 

4) If the percentage of pregnant women who received blood-boosting tablets (𝑋9) by 1%, 
then the average of low birth weight will increase by exp(0.0374) or 1.0381 times, where 
the other covariates are fixed. 

5) If the percentage of antenatal care (𝑋:) increases by 1%, then the average low birth weight 
will increase by exp(0.0291) or 1.0295 times, where the other covariates are fixed. 

 

5. CONCLUSION 
Generalized Poisson regression is an accurate regression technique for modeling and 

handling count data with overdispersion in Poisson regression. The generalized Poisson 
regression was developed from the generalized linear models. The maximum likelihood and 
Fisher-scoring methods were used to estimate the generalized Poisson regression model 
parameters, whereas the likelihood ratio test and Wald test methods can be employed to test 
the significance of parameters. The generalized Poisson regression model was applied to 
modeling low birth weight in Indonesia in 2021. The factor affecting the low birth weight in 
Indonesia based on the generalized Poisson regression model were: poverty rate, percentage of 
households with access to appropriate sanitation, percentage of pregnant women at risk of 
chronic energy deficiency receiving additional food, percentage of pregnant women who 
received blood-boosting tablets, and percentage of antenatal care. However, this study still 
needs to be continued by using a spatial regression approach for future research, such as 
geographically weighted generalized Poisson regression, because there is any spatial 
heterogeneity in the generalized Poisson regression model.  
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