Mineral and Insilico Study of Sapat Siam Fish (Trichopodus pectoralis, Regan 1910) on Appetite Regulation

Erwin Rosadi(1), Lia Yulia Budiarti(2), Andifa Anugerah Putra(3), Resvi Amalia Rahmah(4), Putri Mariatul Qiptiah(5), Isnaini Isnaini(6*)


(1) Faculty of Fishery and Marine, University of Lambung Mangkurat, Banjarmasin, South Kalimantan, Indonesia
(2) Faculty of Medicine, University of Lambung Mangkurat, Banjarmasin, South Kalimantan, Indonesia
(3) Faculty of Mathematics and Natural Sciences, Universitas Lambung Mangkurat, Banjarmasin, South Kalimantan, Indonesia
(4) Faculty of Medicine Lambung mangkurat University, Banjarmasin, South Kalimantan, Indonesia
(5) Faculty of Medicine Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
(6) [Scopus ID: 57204801189] FK Universitas Lambung Mangkurat, Banjarmasin, South Kalimantan, Indonesia
(*) Corresponding Author

Abstract


Backgrounds: Production of Sapat siam fish is ranked second after Papuyu. Giving fish in cases of wasting can overcome mineral deficiencies in wasting sufferers, because fish contains minerals. Wasting sufferers experience Fe, Ca and Zn deficiencies. There is a relationship between cases of wasting and the incidence of anemia. Anemia sufferers experience a decrease in appetite. Until now, there is no known effect of giving the minerals Fe, Ca and Zn on appetite regulation. 

Objectives: This research aims to determine the mineral content of Sapat siam fish specifically Fe, Ca and Zn and the influence of that minerals on appetite regulation in silico.

Methods: Analysis of mineral content in Sapat siam fish meat using the AAS method and analysis of the influence of Fe, Ca and Zn minerals using the in-silico method.

Results: Sapat siam fish meat contains Fe, Ca and Zn with concentrations of 34.5 ± 0.8485, 1,670 ± 183.8478 and 22.8 ± 0.1414, respectively. The presence of Fe, Ca and Zn in Sapat siam fish meat prediction can binding with ligand Ghrelin, leptin, NPY (Neuropeptide Y), ARC, IL-1β, AgRP

 Conclusion: Sapat siam fish prediction can stimulate appetite

Keywords


Sapat Siam Fish;Trichopodus pectoralis; Mineral compounds; Appetite; insilico

Full Text:

PDF

References


Kementerian Kelautan dan Perikanan RI. Data Volume Produksi Perikanan Indonesia (Ton). 2021.

Kementerian Kelautan dan Perikanan RI. Data Volume Produksi Perikanan Tangkap per Provinsi (Ton). 2021.

Yasinta. IHK di Kalsel pada Desember 2022 Menjadi 117,15. 2023.

Dinas Perikanan Provinsi Kalimantan Selatan. Produksi Ikan Darat menurut Jenis Perairan dan Jenis Ikan (Ton) Tahun 2009. 2018.

Fadilla EN, Darmanto YS, Purnamayanti L. Characteristics of Dry Noodles with the Addition of Different Fish Scales. J Perikan Univ Gadjah Mada. 2019;21(2).

Panthum T, Laopichienpong N, Kraichak E, Singchat W, Nguyen DHM, Ariyaraphong N, et al. The Snakeskin Gourami (Trichopodus pectoralis) Tends to Exhibit XX/XY Sex Determination. Fishes. 2021;6(43):1–17.

Amare B, Moges B, Fantahun B, Tafess K, Woldeyohannes D, Yismaw G, et al. Micronutrient levels and nutritional status of school children living in Northwest Ethiopia. Nutr J. 2012;11(1):1–8.

Patimah S. Hubungan KEK dan Wasting dengan Kejadian Anemia Pada Remaja Putri di Kabupaten Majene. Wind Public Heal J. 2021;2(1):110–9.

Diz-Chaves Y. Ghrelin, Appetite Regulation, and Food Reward: Interaction with Chronic Stress. Int J Pept. 2011;

Sohn JW. Network of hypothalamic neurons that control appetite. BMB Rep. 2015;48(4):229–33.

Inui M, Miyado M, Igarashi M, Tamano M, Kuno A, Yamashita S, et al. Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system. Sci Rep. 2014;23(4):5396.

Essner RA, Smith AG, Jamnik AA, Ryba AR, Trutner ZD, Carter ME. AgRP Neurons Can Increase Food Intake during Conditions of Appetite Suppression and Inhibit Anorexigenic Parabrachial Neurons. J Neuurosci. 2017;37(36):8678–87.

Loopies C, Apituley D, Soukotta D. Scales Mineral Composition of Red Snapper Fish (Lutjanus Sp.) and Parrotfish (Scarus Sp.) with Acid Immersion. Pros Simp Nas VII Kelaut dan Perikan 2020. 2020;

Guedes IA, Costa LSC, Dos Santos KB, Karl ALM, Rocha GK, Teixeira IM, et al. Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants. Sci Rep. 2021;11(1):5543.

Santos KB, Guedes IA, Karl ALM, Dardenne LE. Highly flexible ligand docking: Benchmarking of the DockThor program on the LEADS-PEP protein–peptide data set. J Chem Inf Model. 2020;60(2):667–83.

Liu H, Sun D, Myasnikov A, Damian M, Baneres JL, Sun J, et al. Structural basis of human ghrelin receptor signaling by ghrelin and the synthetic agonist ibutamoren. Nat Commun. 2021;12(1):6410.

Zhang F, Basinski MB, Beals JM, Briggs SL, Churgay LM, Clawson DK, et al. Crystal structure of the obese protein Ieptin-E100. Nature. 1997;387(6629):206–9.

Hallin EI, Bramham CR, Kursula P. Structural properties and peptide ligand binding of the capsid homology domains of human Arc. Biochem Biophys Reports. 2021;26:100975.

Yang Z, Han S, Keller M, Kaiser A, Bender BJ, Bosse M, et al. Structural basis of ligand binding modes at the neuropeptide Y Y1 receptor. Nature. 2018;556(7702):520–4.

Yu B, Blaber M, Gronenborn AM, Clore GM, Caspar DLD. Disordered water within a hydrophobic protein cavity visualized by x-ray crystallography. Proc Natl Acad Sci. 1999;96(1):103–8.

Ataie NJ, Hoang QQ, Zahniser MPD, Tu Y, Milne A, Petsko GA, et al. Zinc coordination geometry and ligand binding affinity: the structural and kinetic analysis of the second-shell serine 228 residue and the methionine 180 residue of the aminopeptidase from Vibrio proteolyticus. Biochemistry. 2008;47(29):7673–83.

Geng Y, Mosyak L, Kurinov I, Zuo H, Sturchler E, Cheng TC, et al. Structural mechanism of ligand activation in human calcium-sensing receptor. Elife. 2016;5:e13662.

Jevtovic V, Alshamari AK, Milenković D, Dimitrić Marković J, Marković Z, Dimić D. The Effect of Metal Ions (Fe, Co, Ni, and Cu) on the Molecular-Structural, Protein Binding, and Cytotoxic Properties of Metal Pyridoxal-Thiosemicarbazone Complexes. Int J Mol Sci. 2023;24(15):11910.

Raiten DJ, Ashour FAS, Ross AC, Meydani SN, Dawson HD, Stephensen CB, et al. Inflammation and nutritional science for programs/policies and interpretation of research evidence (INSPIRE). J Nutr. 2015;145(5):1039S-1108S.

Dwivedi SL, Garcia-Oliveira AL, Govindaraj M, Ortiz R. Biofortification to avoid malnutrition in humans in a changing climate: Enhancing micronutrient bioavailability in seed, tuber, and storage roots. Front Plant Sci. 2023;14:1119148.

Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci Off J Isfahan Univ Med Sci. 2014;19(2):164.

Shlisky J, Mandlik R, Askari S, Abrams S, Belizan JM, Bourassa MW, et al. Calcium deficiency worldwide: Prevalence of inadequate intakes and associated health outcomes. Wiley Online Library; 2022.

Bonaventura P, Benedetti G, Albarède F, Miossec P. Zinc and its role in immunity and inflammation. Autoimmun Rev. 2015;14(4):277–85.

Rytter MJH, Kolte L, Briend A, Friis H, Christensen VB. The immune system in children with malnutrition—a systematic review. PLoS One. 2014;9(8):e105017.

Chen J, Chen V, Kawamura T, Hoang I, Yang Y, Wong AT, et al. Charge Characteristics of Agouti-Related Protein Implicate Potent Involvement of Heparan Sulfate Proteoglycans in Metabolic Function. Iscience. 2019;22:557–70.


Article Metrics

Abstract view : 238 times
PDF - 34 times

DOI: https://doi.org/10.26714/magnamed.11.1.2024.38-52

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Indexed by

 

      

 

Creative Commons License

MAGNA MEDIKA by APKKM is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.