The trend of Virtual Laboratory Apps: Ontology, Epistemology, and Axiology Perspectives to Support Contextualized Knowledge to Develop Learning Resource in Chemistry Education

eko yuliyanto(1*), Siti Masitoh(2), Mochamad Nursalim(3)

(1) Universitas Negeri Surabaya
(2) Universitas Negeri Surabaya
(3) Universitas Negeri Surabaya
(*) Corresponding Author


There were difficulties with the pandemic-related chemistry practicum learning. Therefore, a study of these issues is required. A virtual laboratory is one existing solution. This research seeks to identify the current Android VL trend. How does Android VL support chemistry education's scientific method? Do pupils now possess any new skills due to utilizing VL Android? This study is a case study. 237 Android Apps were found in the search results and categorized as Apps Virtual Laboratory (VL). The results of the selection produced 118 Apps. The study's findings indicate that chemical reactions are generally the focus of the VL, primarily created by the British state. It would be ideal to combine VL and lab practicum learning, as this would enable students to be better prepared for fieldwork in the real world and boost student self-efficacy and instructor teaching motivation.


Virtual Laboratory, Trend, Learning Resource, Chemistry Education

Full Text:



Ali, N., & Ullah, S. (2020). Review to Analyze and Compare Virtual Chemistry Laboratories for Their Use in Education. Journal of Chemical Education, 97(10), 3563–3574.

Aliyu, F., & Talib, C. A. (2019). Virtual Chemistry Laboratory : A Panacea to Problems of Conducting Chemistry Practical at Science Secondary Schools in Nigeria. International Journal of Engineering and Advanced Technology (IJEAT), 8(5), 544–549.

Bretz, S. L. (2019). Evidence for the Importance of Laboratory Courses. Journal of Chemical Education, 96, 193–195.

Chan, P., Gerven, T. Van, Dubois, J., & Bernaerts, K. (2021). Virtual chemical laboratories : A systematic literature review of research, technologies and instructional design. Computers and Education Open, 2, 100053.

Crowe, S., Cresswell, K., Robertson, A., Huby, G., Avery, A., & Sheikh, A. (2011). The Case Study Approach. BMC Med Res Methodol, 11(100), 1471–2288.

Dinevski, D., & Herga, N. R. (2012). Virtual Laboratory in Chemistry – Experimental Study of Understanding, Reproduction, and Application of Acquired Knowledge of Subject's s Chemical Content. Organizacija, 45.

Hamed, G., & Aljanazrah, A. (2020). The effectiveness of Using Virtual Experiments on Students’ Learning in The General Physics lab. Journal of Information Technology Education: Research, 19, 976–995.

Heras, S. C. de las, Kensington-Miller, B., Young, B., Gonzalez, V., Krühne, U., Mansouri, S. S., & Baroutian, S. (2021). Benefits and Challenges of a Virtual Laboratory in Chemical and Biochemical Engineering: Students ’ Experiences in Fermentation. Journal of Chemical Education, 98, 866−875.

JONES, N. (2018). The virtual lab. Nature, 562, 8–10. org/10.1038/d41586-018-06831-1

Kelley, E. W. (2021). Sample Plan for Easy, Inexpensive, Safe, and Relevant Hands-On, At-Home Wet Organic Chemistry Laboratory Activities. Journal of Chemical Education, 98(1622–1635).

Kalil, V. K., Muthupalani, S., & Achuthan, K. (2020). Virtual experimental platforms in chemistry laboratory education and its impact on experimental self-efficacy. International Journal of

Educational Technology in Higher Education, 17(30), 1–22.

Mistry, N., & Shahid, N. (2021). Design and Delivery of Virtual Inquiry-Based Organic Chemistry Experiments. Journal of Chemical Education, 98(9), 2952–2958.

Nais, M., Sugiyarto, K., & Ikhsan, J. (2019). Virtual chemistry laboratory ( virtual chem-lab ): potential experimental media in hybrid learning. Virtual chemistry laboratory ( virtual chem-lab ): potential experimental media in hybrid learning. In International Conference of Chemistry. IOP Conf. Series: Journal of Physics:

Rahmadani, N. F., Retno, S., Ariani, D., Mulyani, S., & Yunita, N. (2020). Chemistry Teachers ’ Perspectives on Virtual STEM Laboratories as Learning Media. In 6th International Seminar on Science Education (Vol. 541, pp. 627–633).

Rahmawati, Y., Taylor, E., Taylor, P. C., Ridwan, A., & Mariah, A. (2022). Students ' Engagement in Education as Sustainability : Implementing an Ethical Dilemma-STEAM Teaching Model in Chemistry Learning. Sustainability, 14(3554), 1–15.

Reid, N., & Shah, I. (2007). The role of laboratory work in university chemistry. Chemistry Education Research and Practice, 8(2), 172–185.

Serafin, J. M., & Chabra, J. (2020). Using a Cooperative Hands-On General Chemistry Laboratory Framework for a Virtual General Chemistry Laboratory. Journal of Chemical Education, 97(9), 3007–3010.

Thi Vu Hoai, T., & Thao, T. T. T. (2021). Medical Pharmaceutical Sciences Using Virtual Experiments in Lessons on Oxygen-Sulfur Chemistry 10 to Develop the Experimental Chemistry Competency for Students in Teaching. Medical Pharmaceutical Sciences, 1(2), 8–15.

Ullah, S., Ali, N., & Rahman, S. U. (2016). The Effect of Procedural Guidance on Students ’ Skill Enhancement in a Virtual Chemistry Laboratory. Journal of Chemical Education, 93(12), 2018–2025.

Warning, L. A., & Kobylianskii, K. (2021). A Choose-Your-Own-Adventure-Style Virtual Lab Activity. Journal of Chemical Education, 98, 924–929.

Winkelmann, K., Scott, M., & Wong, D. (2014). Experiment within the Virtual World of Second Life. Journal of Chemical Education, 91(9), 1432–1438.

Article Metrics

Abstract view : 33 times
PDF - 5 times



  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



Jl. Kedungmundu Raya No.18, Semarang, Jawa Tengah, Indonesia
    Telp. (024)76740231, 76740231

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License

Journal Pendidikan Saisn (JPS)
ISSN:2339-0786, e-ISSN:2502-1443
Published by: Chemistry Education, Muhammadiyah Semarang University