Agus Noor Sidiq(1*)

(1) PT. PLN (Persero) UPDL Suralaya
(*) Corresponding Author


The Implementation of co-firing on coal-fired power plants in Indonesia can reduce Greenhouse Gas (GHG) emissions that affect climate change. This reduction in Greenhouse Gas (GHG) emissions has the potential to avoid the carbon tax imposed on carbon-producing industries that exceed the upper limit of carbon emissions. The difference between the Carbon Emission Factor (𝐹𝐸𝐶𝑂2 ) in tons of CO2 e/MWh against the assigned Carbon Cap means the Carbon Economic Value (CEV) owned. CEV can be positive or negative depending on the difference between the results of the Carbon Cap. The opportunity for CEV to be traded depends on the amount of CEV that can be obtained from the co-firing. From this research, it was found that to get a good CEV, the minimum co-firing percentage is 7%. From the calculation results, the lowest value of 𝐹𝐸𝐶𝑂2 (𝑐𝑜𝑟𝑟) that can be achieved in the calculations in this paper is 0.993 tons/MWh at the co-firing percentage of 7%, while the maximum value of 𝐹𝐸𝐶𝑂2 (𝑡𝑜𝑡) was 1.079 tons/MWh at 7% co-firing percentage. From this study, it was also found that the greater the percentage of co-firing used, the lower the value of 𝐹𝐸𝐶𝑂2 (𝑐𝑜𝑟𝑟) while the value of 𝐹𝐸𝐶𝑂2 (𝑡𝑜𝑡) is getting  bigger.


Biomass, Greenhouse Gas, Co-Firing, Carbon Economic Value

Full Text:



A. K. M. Sadrul Islam and M. Ahiduzzaman, “Biomass energy: Sustainable solution for greenhouse gas emission,” in AIP Conference Proceedings, 2012, vol. 1440, doi: 10.1063/1.4704200.

A. K. Varma and P. Mondal, “Physicochemical characterization and pyrolysis kinetics of wood sawdust,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 38, no. 17, pp. 2536– 2544, 2016, doi: 10.1080/15567036.2015.1072604.

B. K. Fiskal, “Pajak Karbon Di Indonesia,” PAJAK KARBON DI Indones. Upaya Mitigasi Perubahan Iklim dan Pertumbuhan Ekon. Berkelanjutan, pp. 1–17, 2021.

D. Jenderal Ketenagalistrikan Kementerian ESDM and B. Energi -Sub Bidang Ketenagalistrikan, “Pedoman Penghitungan dan Pelaporan Inventarisasi Gas Rumah Kaca,” p. 15, 2018.

E. A. Chernova, “Stationary combustion,” J. Appl. Mech. Tech. Phys., vol. 7, no. 6, pp. 69– 70, 1966, doi: 10.1007/BF00914340.

F. Sebastián, J. Royo, and M. Gómez, “Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology,” Energy, vol. 36, no. 4, 2011, doi: 10.1016/

J. J. H. Putra, N. Nabilla, and F. Y. Jabanto, “COMPARING ‘CARBON TAX’ AND ‘CAP AND TRADE’ AS MECHANISM TO REDUCE EMISSION IN INDONESIA,” Int. J. Energy Econ. Policy, vol. 11, no. 5, 2021, doi: 10.32479/ijeep.11375.

M. V. Gil and F. Rubiera, “Coal and biomass cofiring: fundamentals and future trends,” in New Trends in Coal Conversion: Combustion, Gasification, Emissions, and Coking, 2018.

R. B. Salsabila Hana Safira, “Peraturan Terkait Emisi Karbon dan Perdagangan Karbon di Indonesia,” Arma Law, 2021.

R. I. Dirjen Gatrik, “Uji Coba Perdagangan Karbon Pada PLTU Batubara,” Webinar Penyelenggaraan Nilai Ekon. Karbon di Subsektor Ketenagalistrikan, pp. 1–10, 2021, [Online]. Available: ditjen-ketenagalistrikan.pdf.

V. Johansson, M. Lehtveer, and L. Göransson, “Biomass in the electricity system: A complement to variable renewables or a source of negative emissions?,” Energy, vol. 168, 2019, doi: 10.1016/

Article Metrics

Abstract view : 16 times
PDF - 1 times



  • There are currently no refbacks.

Copyright (c) 2022 TRAKSI

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

TRAKSI : Majalah Ilmiah Teknik Mesin

ISSN : 1693-3451 (Pinted) e-ISSN : 2579-9738 (Online)

Published by: LP2M Unimus bekerjasama dengan APTI (Asosiasi Profesi Teknik Indonesia)  


Jl. Kasipah No. 12 Semarang

E-mail: Call: 0248445768


Asosiasi Profesi Teknik Indonesia (APTI)