FOURIER SERIES APPLICATION FOR MODELING “CHOCOLATE” KEYWORD SEARCH TRENDS IN GOOGLE TRENDS DATA

Andrea Tri Rian Dani(1*), Fachrian Bimantoro Putra(2), Muhammad Aldani Zen(3), Vita Ratnasari(4), Qonita Qurrota A'yun(5)


(1) Statistics Study Program, Department of Mathematics, Faculty of Mathematics and Natural Sciences, Mulawarman University, Samarinda, Indonesia
(2) Statistics Study Program, Department of Mathematics, Faculty of Mathematics and Natural Sciences, Mulawarman University, Samarinda, Indonesia
(3) Statistics Study Program, Department of Mathematics, Faculty of Mathematics and Natural Sciences, Mulawarman University, Samarinda, Indonesia
(4) Department of Statistics, Faculty of Science and Data Analytics, Sepuluh Nopember Institute of Technology, Surabaya, Indonesia
(5) Mathematics Study Program, Department of Mathematics, Faculty of Mathematics and Natural Sciences, Mulawarman University, Samarinda, Indonesia
(*) Corresponding Author

Abstract


In some cases of regression modeling, it is very common to find a repeating pattern. To model this, of course, the approach used must be in accordance with the characteristics of the data. The Fourier series is one of the proposed approaches, because it has advantages in modeling relationship patterns that tend to repeat, such as cosine sine waves. The Fourier series is a subset of nonparametric regression, which has good flexibility in modeling. In this study, the Fourier series approach was applied to model search trend data for the keyword "Chocolate" sourced from Google Trends. Generalized Cross-Validation (GCV) is used as model evaluation criteria. Based on the results of the analysis, the best Fourier series nonparametric regression model is obtained with the number of oscillations of five, which is indicated by the minimum GCV value.

Keywords


Chocolate; Fourier Series; Google Trends; Nonparametric Regression; Generalized Cross-Validation

Full Text:

PDF

References


Suparti, R. Santoso, A. Prahutama, A. R. Devi, and Sudargo, “Modeling longitudinal data based on Fourier regression,” in Journal of Physics: Conference Series, Jun. 2019, vol. 1217, no. 1. doi: 10.1088/1742-6596/1217/1/012105.

N. P. A. M. Mariati, I. N. Budiantara, and V. Ratnasari, “Combination Estimation of Smoothing Spline and Fourier Series in Nonparametric Regression,” Journal of Mathematics, vol. 2020, 2020, doi: 10.1155/2020/4712531.

A. T. R. Dani and N. Y. Adrianingsih, “Pemodelan Regresi Nonparametrik dengan Estimator Spline Truncated vs Deret Fourier,” Jambura Journal of Mathematics, vol. 3, no. 1, pp. 26–36, 2021, doi: 10.34312/jjom.v3i1.7713.

Suparti, R. Santoso, A. Prahutama, and A. R. Devi, “Indonesia’s Inflation Analysis Using Hybrid Fourier - Wavelet Multiscale Autoregressive Method,” in Journal of Physics: Conference Series, Sep. 2019, vol. 1306, no. 1. doi: 10.1088/1742-6596/1306/1/012041.

M. A. D. Octavanny, I. N. Budiantara, H. Kuswanto, and D. P. Rahmawati, “Modeling of Children Ever Born in Indonesia Using Fourier Series Nonparametric Regression,” in Journal of Physics: Conference Series, Feb. 2021, vol. 1752, no. 1. doi: 10.1088/1742-6596/1752/1/012019.

B. Lestari and I. Nyoman Budiantara, “Spline estimator and its asymptotic properties in multiresponse nonparametric regression model.”

A. Wahab, I. N. Budiantara, and K. Fitriasari, “The Estimation of Residual Variance in Nonparametric Regression,” Jurnal Matematika, Statistika dan Komputasi, vol. 17, no. 3, pp. 438–446, 2021, doi: 10.20956/j.v17i3.13192.

A. A. Khalil, I. Budiantara, and I. Zain, “Comparison of linear and quadratic bi-response semiparametric regression models using spline truncated,” J Phys Conf Ser, vol. 1511, no. 1, 2020, doi: 10.1088/1742-6596/1511/1/012046.

Sifriyani, I. N. Budiantara, S. H. Kartiko, and Gunardi, “A new method of hypothesis test for truncated spline nonparametric regression influenced by spatial heterogeneity and application,” Abstract and Applied Analysis, vol. 2018, 2018, doi: 10.1155/2018/9769150.

Wahba, Spline Models for Observational Data, 2nd ed. Pennsylvania: SIAM, 1990.

A. T. R. Dani and L. Ni’matuzzahroh, “Penerapan Keluarga Model Spline Truncated Polinomial pada Regresi Nonparametrik,” Inferensi, vol. 5, no. 1, p. 37, 2022, doi: 10.12962/j27213862.v5i1.12537.

V. Ratnasari, I. N. Budiantara, and A. T. R. Dani, “Nonparametric Regression Mixed Estimators of Truncated Spline and Gaussian Kernel based on Cross-Validation ( CV ), Generalized Cross- Validation ( GCV ), and Unbiased Risk ( UBR ) Methods,” Int J Adv Sci Eng Inf Technol, vol. 11, no. 6, pp. 2400–2406, 2021.

M. Bilodeau, “Fourier smoother and additive models,” Canadian Journal of Statistics, vol. 20, no. 3, pp. 257–269, 1992, doi: 10.2307/3315313.

N. P. A. M. Mariati, I. N. Budiantara, and V. Ratnasari, “The application of mixed smoothing spline and fourier series model in nonparametric regression,” Symmetry (Basel), vol. 13, no. 11, Nov. 2021, doi: 10.3390/sym13112094.

N. P. A. M. Mariati, I. N. Budiantara, and V. Ratnasari, “Modeling Poverty Percentages in the Papua Islands using Fourier Series in Nonparametric Regression Multivariable,” in Journal of Physics: Conference Series, Dec. 2019, vol. 1397, no. 1. doi: 10.1088/1742-6596/1397/1/012071.

A. T. Ampa, I. N. Budiantara, and I. Zain, “Selection of Optimal Smoothing Parameters in Mixed Estimator of Kernel and Fourier Series in Semiparametric Regression,” J Phys Conf Ser, vol. 2123, no. 1, 2021, doi: 10.1088/1742-6596/2123/1/012035.

A. T. R. Dani, V. Ratnasari, and I. N. Budiantara, “Optimal Knots Point and Bandwidth Selection in Modeling Mixed Estimator Nonparametric Regression,” IOP Conf Ser Mater Sci Eng, vol. 1115, no. 1, p. 012020, Mar. 2021, doi: 10.1088/1757-899x/1115/1/012020.

H. Husain, I. N. Budiantara, and I. Zain, “Mixed estimator of spline truncated, Fourier series, and kernel in biresponse semiparametric regression model,” IOP Conf Ser Earth Environ Sci, vol. 880, no. 1, 2021, doi: 10.1088/1755-1315/880/1/012046.

A. T. R. Dani, A. F. Dewi, and L. Ni’matuzzahroh, “Studi Simulasi dan Aplikasi: Estimator Deret Fourier pada Pemodelan Regresi Nonparametrik,” in Prosiding Seminar Nasional Matematika, Statistika, dan Aplikasinya, 2022, pp. 279–288.

K. Nisa’ and I. N. Budiantara, “Modeling East Java Indonesia Life Expectancy Using Semiparametric Regression Mixed Spline Truncated and Fourier Series,” MEDIA STATISTIKA, vol. 13, no. 2, pp. 149–160, Dec. 2020, doi: 10.14710/medstat.13.2.149-160.

I. N. Budiantara, “Penelitian Bidang Regresi Spline Menuju Terwujudnya Penelitian Statistika Yang Mandiri Dan Berkarakter,” Prosiding Seminar Nasional FMIPA Undiksha, pp. 9–28, 2011.

E. D. Igustin and I. N. Budiantara, “Pemodelan Faktor-Faktor yang Mempengaruhi Total Fertility Rate di Indonesia Menggunakan Regresi Nonparametrik Spline Truncated,” Jurnal Sains dan Seni ITS, vol. 9, no. 2, pp. 178–185, 2021, doi: 10.12962/j23373520.v9i2.56791.

S. Sifriyani, A. T. R. Dani, M. Fauziyah, M. N. Hayati, S. Wahyuningsih, and S. Prangga, “Spline And Kernel Mixed Estimators In Multivariable Nonparametric Regression For Dengue Hemorrhagic Fever Model,” Commun. Math. Biol. Neurosci., vol. 2023, pp. 1–15, 2023.

Sifriyani, S. H. Kartiko, I. N. Budiantara, and Gunardi, “Development of nonparametric geographically weighted regression using truncated spline approach,” Songklanakarin Journal of Science and Technology, vol. 40, no. 4, pp. 909–920, 2018, doi: 10.14456/sjst-psu.2018.98.

I. Wayan Sudiarsa, “Simulations Study Combined Estimator Fourier Series and Spline Truncated in Multivariable Nonparametric Regression,” in IOP Conference Series: Materials Science and Engineering, Jul. 2019, vol. 546, no. 5. doi: 10.1088/1757-899X/546/5/052074.

L. Laome, I. N. Budiantara, and V. Ratnasari, “Estimation Curve of Mixed Spline Truncated and Fourier Series Estimator for Geographically Weighted Nonparametric Regression,” Mathematics, vol. 11, pp. 1–13, 2023.

I. Wayan Sudiarsa, I. Nyoman Budiantara, S. Suhartono, and S. W. Purnami, “Combined estimator fourier series and spline truncated in multivariable nonparametric regression,” Applied Mathematical Sciences, vol. 9, no. 97–100, pp. 4997–5010, 2015, doi: 10.12988/ams.2015.55394.

R. Pane, I. N. Budiantara, I. Zain, and B. W. Otok, “Parametric and nonparametric estimators in fourier series semiparametric regression and their characteristics,” Applied Mathematical Sciences, vol. 8, no. 101–104, pp. 5053–5064, 2014, doi: 10.12988/ams.2014.46472.

N. Y. Adrianingsih and A. T. R. Dani, “Estimasi Model Regresi Semiparametrik Spline Truncated Menggunakan Metode Maximum Likelihood Estimation (MLE),” Jambura Journal of Probability and Statistics, vol. 2, no. 2, pp. 56–63, 2021, doi: 10.34312/jjps.v2i2.10255.

G. Wahba and Y. Wang, “Spline Function,” Encyclopedia of Statistical Sciences, pp. 1–27, 2014, doi: 10.4135/9781446247501.n3679.


Article Metrics

Abstract view : 497 times
PDF - 159 times

DOI: https://doi.org/10.26714/jsunimus.11.1.2023.1-9

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Statistika Universitas Muhammadiyah Semarang

Editorial Office:
Department of Statistics
Faculty Of Mathematics And Natural Sciences
 
Universitas Muhammadiyah Semarang

Jl. Kedungmundu No. 18 Semarang Indonesia



Published by: 
Department of Statistics Universitas Muhammadiyah Semarang

View My Stats

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License