FORECASTING THE NUMBER OF PASSENGER AT JENDERAL AHMAD YANI SEMARANG INTERNATIONAL AIRPORT USING HYBRID SINGULAR SPECTRUM ANALYSIS-NEURAL NETWORK (SSA-NN) METHOD

Tresiani Yunitasari(1), M. Al Haris(2*), Prizka Rismawati Arum(3)


(1) Department of Statistics, Universitas Muhammadiyah Semarang, Semarang, Indonesia
(2) Department of Statistics, Universitas Muhammadiyah Semarang, Semarang, Indonesia
(3) Department of Statistics, Universitas Muhammadiyah Semarang, Semarang, Indonesia
(*) Corresponding Author

Abstract


Transportation was an important sector of supporting the economic growth of a country. The impact of the Covid-19 2020 pandemic at Achmad Yani International Airport in Semarang resulted in the movement of the number of passengers decreasing quite drastically, but in mid-2020 the movement of the number of passengers had slowly increased. Forecasting was done to determine the flow of movement of the number of passengers in the future using the Hybrid Singular Spectrum Analysis (SSA)-Neural Network (NN) method. The SSA method was expected to be able to decompose various patterns in the data into trend, seasonality and noise. Furthermore, the NN method was used to analyze nonlinear patterns in the data. The results showed that the best method was a combination of the SSA method with a window length of 40 and the NN method with a 6-8-1 network architecture (6 input neurons, 8 hidden neurons and 1 output neuron) for the trend component, 11-15-1 (11 neurons input, 15 hidden neurons and 1 output neuron) for the seasonal component, and 10-15-1 (10 input neurons, 15 hidden neurons and 1 output neuron) for the noise component. The model produces a prediction error based on a MAPE value of 0.54% or an accuracy rate of 99.46%.

Keywords


Forecasting; Hybrid SSA-NN; Passenger; Transportation

Full Text:

PDF

References


Sofiana, Suparti, A. R. Hakim, and I. T. Utami, “Peramalan Jumlah Penumpang Pesawat di Bandara Internasional Ahmad Yani dengan Metode Holt Winter’s Exponential Smoothing dan Metode Exponential Emoothing Event Based,” J. Gaussian, vol. 9, no. 4, 2020, doi: 10.14710/j.gauss.v9i4.29448.

A. Larissa, F. C. Garini, W. Anbiya, R. A. Fatharani, F. Salsabila, and T. Toharudin, “Perbandingan Metode SES, Holt’s Linear, Holt’s Winter untuk Peramalan Jumlah Penumpang Pesawat: Penerbangan Domestik di Bandara Soekarno-Hatta,” in SEMINAR NASIONAL STATISTIKA X (2021), 2021.

W. M. Sialagan, “Jasa Transportasi Udara Indonesia,” J. Sos. Hum., vol. 2, no. 1, pp. 57–66, 2011.

M. U. Aidi, Y. Anas, B. Hario, and W. Kushardjoko, “Analisis Kapasitas Air side Rencana Pengembangan Bandar Udara Internasional Ahmad Yani Semarang,” J. Karya Tek. Sipil, vol. 2, no. 4, pp. 127–136, 2013.

BPS Provinsi Jawa Tengah, Jawa Tengah dalam Angka 2022. 2022.

F. Rianda, “Pemodelan Intervensi untuk Menganalisis dan Meramalkan Jumlah Penumpang Pesawat di Bandara Soekarno-Hatta Akibat Pandemi Covid-19,” in Seminar Nasional Official Statistics 2021, 2021, vol. 2021, no. 1, pp. 283–292, doi: 10.34123/semnasoffstat.v2021i1.857.

Y. Rizkiana, E. Zukhronah, and H. Pratiwi, “Peramalan Data Banyak Penumpang Bandara Adi Soemarmo Menggunakan Metode SARIMAX,” Pros. Sendika, vol. 5, no. 2, pp. 183–188, 2019.

Suhartono, S. Isnawati, N. A. Salehah, D. D. Prastyo, H. Kuswanto, and M. H. Lee, “Hybrid SSA-TSR-ARIMA for water demand forecasting,” Int. J. Adv. Intell. Informatics, vol. 4, no. 3, pp. 238–250, 2018, doi: 10.26555/ijain.v4i3.275.

Suhartono, E. Setyowati, N. A. Salehah, M. H. Lee, S. P. Rahayu, and B. S. S. Ulama, A hybrid singular spectrum analysis and neural networks for forecasting inflow and outflow currency of bank Indonesia, vol. 937. Springer Singapore, 2019.

H. Utami, Y. W. Sari, Subanar, Abdurakhman, and Gunardi, “Peramalan Beban Listrik Daerah Istimewa Yogyakarta dengan Metode Singular Spectrum Analysis (SSA),” Media Stat., vol. 12, no. 2, p. 214, 2019, doi: 10.14710/medstat.12.2.214-225.

I. Athoillah, A. H. Wigena, and H. Wijayanto, “Hybrid Modeling of Singular Spectrum Analysis and Support Vector Regression for Rainfall Prediction,” in Journal of Physics: Conference Series, 2021, vol. 1863, no. 1, doi: 10.1088/1742-6596/1863/1/012054.

D. Safitri, Subanar, H. Utami, and W. Sulandari, “Forecasting of jabodetabek train passengers using singular spectrum analysis and holt-winters methods,” in Journal of Physics: Conference Series, 2020, vol. 1524, pp. 1–9, doi: 10.1088/1742-6596/1524/1/012100.

A. A. Ete, M. Fitrianawati, and M. T. Arifin, “Forecasting the Number of Tourist Arrivals to Batam by applying the Singular Spectrum Analysis and the Arima Method,” in 1st International Conference on Progressive Civil Society (IConProCS 2019), 2019, vol. 317, pp. 119–126, doi: 10.2991/iconprocs-19.2019.24.

Satriani, Nursalam, and R. Ibnas, “Peramalan Indeks Harga Konsumen (IHK) di Sulawesi Selatan dengan Menggunakan Metode Singular Spektrum Analysis (SSA),” J. MSA ( Mat. dan Stat. serta Apl. ), vol. 8, no. 1, p. 82, 2020, doi: 10.24252/msa.v8i1.17441.

A. Suharsono, M. Monica, and J. D. T. Purnomo, “Perbandingan Model Hybrid ARIMAX-FFNN-EGARCH dan Model Hybrid SETAR-EGARH untuk Peramalan (Studi Kasus: Data Cash Outflow dan Inflow Bank Indonesia Kota Kediri),” Inferensi, vol. 5, no. 1, p. 23, 2022, doi: 10.12962/j27213862.v5i1.12470.

S. W. Utami, I. M. Nur, and M. Al Haris, “Peramalan Nilai Ekspor Provinsi Jawa Tengah dengan Metode Fuzzy Time Series Berbasis Algoritma Novel,” J Stat. J. Ilm. Teor. dan Apl. Stat., vol. 15, no. 1, pp. 195–202, 2022.


Article Metrics

Abstract view : 492 times
PDF - 186 times

DOI: https://doi.org/10.26714/jsunimus.11.1.2023.22-33

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Statistika Universitas Muhammadiyah Semarang

Editorial Office:
Department of Statistics
Faculty Of Mathematics And Natural Sciences
 
Universitas Muhammadiyah Semarang

Jl. Kedungmundu No. 18 Semarang Indonesia



Published by: 
Department of Statistics Universitas Muhammadiyah Semarang

View My Stats

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License