REGRESI KUANTIL PENDEKATAN BOOTSTRAP UNTUK PEMODELAN KEMISKINAN DI PULAU JAWA
(1) 
(2) 
(*) Corresponding Author
Abstract
Kemiskinan merupakan masalah multidimensi dan lintas sektor yang dipengaruhi oleh berbagai faktor yang saling berkaitan, antara lain tingkat pendapatan, kesehatan, pendidikan, akses terhadap barang dan jasa, lokasi, geografis, gender, dan kondisi
lingkungan. Untuk itu, dalam rangka menunjang keberhasilan pelaksanaan program pembangunan terutama yang berkaitan dengan penanggulangan kemiskinan di Indonesia khususnya di Pulau Jawa, diperlukan suatu penelitian yang dapat mengetahui
informasi mengenai faktor-faktor yang berpengaruh terhadap kemiskinan.Penelitian ini menggunakan regresi kuantil dengan pendekatan bootstrap, metode ini memiliki kelebihan dapat mengatasi masalah pencilan (outlier) dan heteroskedastisitas. Nilai kuantil yang digunakan dalam penelitian yaitu kuantil ke-? = 0,25; ? = 0,5; ? = 0,75 dan ? = 0,99 denganresampling 500 pada bootstrap standard error.Hasil regresi kuantil pada masing-masing kuantil dengan resampling 500 bootstrap standard error menunjukkan bahwa kuantil ? = 0,25memiliki standar error yang relatif lebih kecil daripada kuantil? = 0,5, ? = 0,75 dan ? = 0,99. Model regresi kuantil dalam penelitian ini mengindikasikan adanya multikolinieritas, sehingga dengan nilai pseudo R 2 sebesar 61,4% terdapat banyak variable yang tidak signifikan dalam model pada ke? = 0,25.
Kata Kunci : Bootstrap standard error, Heteroskedastisitas, Kemiskinan, Regresi Kuantil
lingkungan. Untuk itu, dalam rangka menunjang keberhasilan pelaksanaan program pembangunan terutama yang berkaitan dengan penanggulangan kemiskinan di Indonesia khususnya di Pulau Jawa, diperlukan suatu penelitian yang dapat mengetahui
informasi mengenai faktor-faktor yang berpengaruh terhadap kemiskinan.Penelitian ini menggunakan regresi kuantil dengan pendekatan bootstrap, metode ini memiliki kelebihan dapat mengatasi masalah pencilan (outlier) dan heteroskedastisitas. Nilai kuantil yang digunakan dalam penelitian yaitu kuantil ke-? = 0,25; ? = 0,5; ? = 0,75 dan ? = 0,99 denganresampling 500 pada bootstrap standard error.Hasil regresi kuantil pada masing-masing kuantil dengan resampling 500 bootstrap standard error menunjukkan bahwa kuantil ? = 0,25memiliki standar error yang relatif lebih kecil daripada kuantil? = 0,5, ? = 0,75 dan ? = 0,99. Model regresi kuantil dalam penelitian ini mengindikasikan adanya multikolinieritas, sehingga dengan nilai pseudo R 2 sebesar 61,4% terdapat banyak variable yang tidak signifikan dalam model pada ke? = 0,25.
Kata Kunci : Bootstrap standard error, Heteroskedastisitas, Kemiskinan, Regresi Kuantil
Full Text:
PDFArticle Metrics
Abstract view : 741 timesPDF - 290 times
DOI: https://doi.org/10.26714/jsunimus.4.2.2016.%25p
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Jurnal Statistika
Editorial Office:
Department of Statistics
Faculty Of Mathematics And Natural Sciences
Universitas Muhammadiyah Semarang
Jl. Kedungmundu No. 18 Semarang Indonesia
Published by:
Department of Statistics Universitas Muhammadiyah Semarang
This work is licensed under a Creative Commons Attribution 4.0 International License