PENDEKATAN REGRESI SEMIPARAMETRIK SPLINE TRUNCATED UNTUK PEMODELAN TINGKAT PENGANGGURAN TERBUKA DI JAWA TENGAH
Tiani Wahyu Utami(1*)
(1)  (*) Corresponding Author
Abstract
Pekerjaan adalah bagian terpenting bagi kehidupan manusia karena merupakan wujud aktualisasi diri kepada keluarga, masyarakat dan bangsa. Permasalahan pada ketenagakerjaan adalah meningkatnya jumlah Tingkat Pengangguran Terbuka (TPT).
Analisis regresi dikembangkan untuk menyelidiki pola hubungan dan pengaruh variabel prediktor terhadap variabel respon, dengan mengestimasi kurva regresinya. Tujuan utama dalam regresi semiparametrik adalah mendapatkan estimasi kurva/model regresi. Salah satu metode yang dapat digunakan adalah Spline Truncated. Dalam artikel ini, variabel respon adalah Tingkat Penggangguran Terbuka (TPT) di Jawa Tengah dan variabel prediktor terdiri dari PDRB, tingkat partisipasi angkatan kerja. Data TPT di Jawa Tengah yang memiliki hubungan linier dengan salah satu variabel prediktor, tetapi dengan variabel prediktor yang lain tidak diketahui bentuk pola hubungannya sehingga dibutuhkan model regresi semiparametrik. Oleh karena pembahasan dalam artikel ini adalah mengenai estimasi model Tingkat Penggangguran Terbuka di Jawa Tengah menggunakan pendekatan regresi semiparametrik Spline Truncated. Hasil penelitian ini menunjukkan bahwa Model terbaik yang diperoleh dari titik knot optimal adalah dengan menggunakan tiga titik knot yaitu K1= -0.556, K2= -0.356, K3= -0.256, dengan nilai GCV terkecil yaitu 2.266 x10-9. Koefisien yg ditentukan atau (Rsq) yang diperoleh adalah sebesar 99,9%. Dari kedua variable prediktor yang berpengaruh secara signifikan terhadap model adalah nilai PDRB dan kesempatan kerja.