ANALISIS SENTIMEN PT TIKI JALUR NUGRAHA EKAKURIR (PT TIKI JNE) PADA MEDIA SOSIAL TWITTER MENGGUNAKAN MODEL FEED FORWARD NEURAL NETWORK
(1) Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro
(2) Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro
(3) Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro
(4) Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro
(5) Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro
(*) Corresponding Author
Abstract
In the 2000s until now, e-commerce systems have continued to develop throughout the world and even in Indonesia. PT Tiki Jalur Nugraha Ekakurir (PT Tiki JNE) is a freight forwarding company that provides convenience for the public in carrying out online shopping activities, and shipping other goods. The large volume of shipments makes PT Tiki JNE have several problems in service that have led to several kinds of responses from users. Sentiment analysis on Twitter social media can be an option to see how PT Tiki JNE’s users respond to services that have been provided. These responses are classified into positive sentiments and negative sentiments. In this research data processing is performed using text mining as the initial source of numerical data from document data which will later be classified using the Artificial Neural Network model with the Resilient Backpropagation algorithm. Data labeling is done manually and sentiment scoring. The test results show that the best model obtained is FFNN 867-7-1 by using the evaluation model 10-Fold Cross Validation to get an overall accuracy performance of 80.27%, kappa accuracy of 39.13%, precision of 69.04%, recall of 70.56%, and f-measure of 69.8% which can be interpreted that the model used is quite good. Analysis of the results using wordcloud shows the tendency of opinion sentiment categories depending on the words used in the tweet.
Keywords
Full Text:
PDFReferences
Arisondang, V., Sudarsono, B. & Prasetyo,Y. 2015. Klasifikasi Tutupan Lahan Menggunakan Metode Segmentasi Berbasis Algoritma Multiresolusi. Jurnal Geodesi Undip Volu. 4, No. 1, Hal: 9-19.
Apriliyah, Mahmudy, W.F., & Widodo, A.W. 2008. Perkiraan penjualan beban listrik menggunakan jaringan syaraf tiruan resilent backpropagation (RProp). Kursor, Vol.4, No.2, 41-47.
Chandani, V. 2015. Komparasi Algoritma Klasifikasi Machine Learning Dan Feature Selection pada Analisis Sentimen Review Film. Journal of Intelligent Systems, Vol.1, No.1, 56–60.
Effendi, A. 2013. Penggunaan Artifial Neural Network untuk Mendeteksi Kelainan Mata Miopi pada Manusia dengan Metode Backpropagation. Universitas Islam Negeri Maulana Malik Ibrahim. Malang.
Fausett, L. 1994. Fundamental of Neural Network. Prentice Hall. New Jersey.
Feldman, R. & Sanger, J. 2007. The Text Mining Handbook. Cambridge University Press. New York.
Gupta, V. & Lehal, G.S. 2009. A Survey of Text Mining Techniques and Applications. Jurnal Emerging Technologies in Web Intelligence, Vol.1, No.1, 60-76
Hanifah, I. & Prastowo, B.N. 2016. Uji GPS Tracking dalam Skala Transportasi Antar Kota. IJEIS, Vol.6, No.2, 175-186.
Haykin, S. 2009. Neural Network and Learning Machines. Third Edition. Pearson Education, New Jersey.
Kusumadewi, S. 2003. Artifical Intelligent (Teknik dan Aplikasinya). Graha Ilmu. Yogyakarta.
Liu, B. 2012. Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers. San Rafael.
Luqyana, W.A., Cholissodin, I., & Perdana, R.S. 2018. Analisis Sentimen Cyberbullying pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, Vol.2, No.11, 4704-4713.
Miley, F. & Read, A. 2011. Using word clouds to develop proactive learners. Journal of the Scholarship of Teaching and Learning, Vol.11, No.2, 91-110.
Pang, B. & Lee, L. 2008. Opinion Mining and Sentiment Analysis. Foundations and Trends in Information Retrieval, Vol. 2, No.1-2, 1–135.
PT Tiki Jalur Nugraha Ekakurir. 2015. Profil Perusahaan. www.jne.co.id/id/perusahaan. Diakses: 07 April 2020.
Riedmiller, M. & Braun, H. 1993. A Direct Adaptive method for Faster Backpropagation Learning : The RPROP Algortihm. In Proceedings of the IEEE International Conference on Neural Networks (ICNN), 586-591.
Salton, G. dan Buckley, C. 1988. Term-Weighting Approaches in Automatic Text Retrieval. Jurnal Information Processing and Management, Vol.24, No.5, 512-523.
Siang, J. J. 2005. Jaringan Saraf Tiruan dan Pemogramannya Menggunakan Matlab. Andi Offset. Yogyakarta.
Susilowati, E., Sabariah, M. K., & Gozali, A. A. 2015. Implementasi Metode Support Vector Machine untuk Melakukan Klasifikasi Kemacetan Lalu Lintas Pada Twitter. E-Proceeding of Engineering, Vol.2, No.1, 1478–7484.
Sutikno, Indriyati, Sukmawati, N.E., Priyo, S.S., Helmie, A.W., Indra, W., Nurdin, B., Tri, W.K., Raditya, L.R., & Diah, P.D. 2016. Backpropagation dan Aplikasinya. Ilmu Komputer Studi Kasus dan Aplikasi, 135-146.
Tala, F.Z. 2003. A Study of Stemming Effects on Information Retrieval in Bahasa Indonesia. Master of Logic Project. Institute for Logic, Language and Computation. Universiteit van Amsterdam, The Netherlands.
Wahid, D.H. & Azhari. 2016. Peringkasan Sentimen Esktraktif di Twitter Menggunakan Hybrid TF-IDF dan Cosine Similarity. Indonesian Journal of Computing and Cybernetics Systems (IJCCS), Vol.10, No.2, 207-218.
Warsito, B. 2009. Kapita Selekta Statistika Neural Network. BP Universitas Diponegoro. Semarang.
Article Metrics
Abstract view : 1189 timesPDF - 112 times
DOI: https://doi.org/10.26714/jsunimus.8.2.2020.103-113
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Jurnal Statistika Universitas Muhammadiyah Semarang
Editorial Office:
Department of Statistics
Faculty Of Mathematics And Natural Sciences
Universitas Muhammadiyah Semarang
Jl. Kedungmundu No. 18 Semarang Indonesia
Published by:
Department of Statistics Universitas Muhammadiyah Semarang
This work is licensed under a Creative Commons Attribution 4.0 International License