PERBANDINGAN MODEL JARINGAN SYARAF TIRUAN DENGAN ALGORITMA LEVENBERG-MARQUADT DAN POWELL-BEALE CONJUGATE GRADIENTPADA KECEPATAN ANGIN RATA-RATA DI KOTA SEMARANG

Dwi Ispriyanti(1), Alan Prahutama(2*), Tarno Tarno(3), Budi Warsito(4), Hasbi Yasin(5), Pandu Anggara(6)


(1) Departemen Statistika FSM Universitas Diponegoro
(2) Departemen Statistika FSM Universitas Diponegoro
(3) Departemen Statistika FSM Universitas Diponegoro
(4) Departemen Statistika FSM Universitas Diponegoro
(5) Departemen Statistika FSM Universitas Diponegoro
(6) Departemen Statistika FSM Universitas Diponegoro
(*) Corresponding Author

Abstract


Wind is one of the most important weather components. Wind is defined as the dynamics of horizontal air mass displacement measured in two parameters, namely speed and direction. Wind speed and direction depend on the air pressure conditions around the place. High wind speed intensity can cause high sea water waves. To estimate wind speed intensity required a study of wind speed prediction. One of method that can be used is Artificial Neural Network (ANN). In ANN there are several models, one of which is backpropagation. Thepurpose of this researchis to compare between backpropagation model with Levenberg-Marquadt and Powell-Beale Conjugate Gradient algorithms. The results of this researchshowing that Powell-Beale Conjugate Gradient better than Levenberg-Marquadtalgorithms. The best model architecture obtained is a network with two input layer neurons, six hidden layer neurons, and one output layer neuron. The activation function used are the logistic sigmoid in the hidden layer and linear in the output layer. MAPE value based on the chosen model is 0,0136% in training process and 0,0088% in testing process.


Keywords


Wind;Artificial Neural Network (ANN);Backpropagation;Levenberg-Marquadt;Powell-Beale Conjugate Gradient;Neuron;MAPE

Full Text:

PDF

References


Fausset, L. 1994. Fundamentals of Neural Networks: Architectures, Algorithms, and Applications. New Jersey: Prentice-Hall Inc.

Haykin, S. 1999. Neural Networks a Comprehensive Foundation. New Jersey: Prentice-Hall Inc.

Kusumadewi, S. 2004. Membangun Jaringan Syaraf Tiruan Menggunakan MATLAB & Excel Link. Yogyakarta: Graha Ilmu.

Nurvitasari, Y dan Irhamah. 2012. Pendekatan Fungsi Transfer Sebagai Input Adaptive Neuro-Fuzzy Inference System (ANFIS) dalam Peramalan Kecepatan Angin Rata-Rata Harian di Sumenep. Jurnal Sains dan Seni Institut Teknologi Sepuluh November Vol. 1 No. 1

Siang, J.J. 2005. Jaringan Syaraf Tiruan dan Pemrogramannya Menggunakan Matlab. Yogyakarta: Penerbit Andi.

Turyanti, A dan Effendy, S. 2006. Meteorologi. Bogor: Institut Pertanian Bogor

Warsito, B. 2009. Kapita Selekta Statistika Neural Neural Network. Semarang:BP UNDIP.


Article Metrics

Abstract view : 433 times
PDF - 119 times

DOI: https://doi.org/10.26714/jsunimus.8.2.2020.127-133

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Jurnal Statistika Universitas Muhammadiyah Semarang

Editorial Office:
Department of Statistics
Faculty Of Mathematics And Natural Sciences
 
Universitas Muhammadiyah Semarang

Jl. Kedungmundu No. 18 Semarang Indonesia



Published by: 
Department of Statistics Universitas Muhammadiyah Semarang

View My Stats

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License