Modeling Spatial Error Model (SEM) On Human Development Index (IPM) In Central Java 2018

Aprilia Dwi Anggara Wati, Laelatul Khikmah

Abstract


The Human Development Index (HDI) is a human development index that is used to achieve the development outcomes of a region. HDI is formed by 3 basic dimensions, namely the health dimension as seen from the indicator of life expectancy at birth, the dimension of knowledge seen from a combination of indicators of average length of schooling and expectation of school years and dimensions of decent living standards as seen from the indicator of average per capita expenditure has been adjusted. The development of HDI in Central Java shows an increase every year. In 2018 the HDI figure for Central Java Province reached 71.12% and increased by 0.6% from the previous year. This is because the large HDI figures in an area are influenced by the large HDI numbers in adjacent areas. The location / area factor is thought to have a spatial dependence effect on the HDI figure. This problem can be overcome by using spatial regression by including the relationship between regions into the model. The spatial regression approach used in this study is the Spatial Error Model (SEM). The weighting matrix used in this study is Queen Contiguity (intersection between sides and corners). This study provides results that the variables that significantly influence HDI are poverty and school enrollment rates.

Keywords


Human Development Index; Queen Contiguity; Spatial Error Model (SEM); Spatial Regression

Full Text:

PDF

References


Ardiati Sazaen, E., n.d. PENERAPAN MODEL REGRESI SPASIAL PADA INDEKS PEMBANGUNAN MANUSIA (IPM) Di JAWA TENGAH.

Astuti, R., Yasin, H., Sugito, S., 2013. Aplikasi Model Regresi Spasial Untuk Pemodelan Angka Partisipasi Murni Jenjang Pendidikan Sma Sederajat Di Provinsi Jawa Tengah. J. Gaussian 2, 375–384.

Laswinia, V.D., Chamid, M.S., 2016. Analisis Pola Hubungan Persentase Penduduk dan Sosial di Indonesia Menggunakan Regresi Spasial. J. Sains dan Seni ITS 5, 1–6. https://doi.org/10.5152/jaem.2014.16769

LISPANI, N.M.L., SUMARJAYA, I.W., SUKARSA, I.K.G., 2018. Pemodelan Jumlah Tindak Kriminalitas Di Provinsi Jawa Timur Dengan Analisis Regresi Spatial Autoregressive and Moving Average. E-Jurnal Mat. 7, 346. https://doi.org/10.24843/mtk.2018.v07.i04.p224

Nisa, I.I., Karim, A., 2017. Pemodelan Spatial Durbin Error Model (SDEM) Pada Data Indeks Pembangunan Manusia (IPM) di Jawa Tengah. J. Stat. Univ. Muhammadiyah Semarang 5, 33–40.

Novitasari, D., Khikmah, L., 2019. Penerapan Model Regresi Spasial Pada Indeks Pembangunan Manusia (IPM) Di Jawa Tengah Tahun 2017. Stat. J. Theor. Stat. Its Appl. 19, 123–134. https://doi.org/10.29313/jstat.v19i2.5068

Safitri, D.W., Darsyah, M.Y., Utami, T.W., 2014. Pemodelan Spatial Error Model (SEM) untuk Indeks Pembangunan Manusia (IPM) di Provinsi Jawa Tengah. J. Stat. 2, 9–14.

Sari, B.N., Priati, P., 2016. Identifikasi Keterkaitan Variabel dan Prediksi Indeks Pembangunan Manusia (IPM) Provinsi Jawa Barat Menggunakan Dynamic Bayesian Networks. J. INFOTEL - Inform. Telekomun. Elektron. 8, 150. https://doi.org/10.20895/infotel.v8i2.123

Wardani, I.K., Handajani, S.S., Zukhronah, E., 2019. Pemodelan Tingkat Pengangguran Terbuka Provinsi Jawa Tengah Menggunakan Model Spatial Autoregressive Moving Average. Pros. Sendika 5, 199–205.


Article Metrics

Abstract view : 23 times
PDF - 4 times

DOI: https://doi.org/10.26714/jichi.v1i2.6341

Refbacks

  • There are currently no refbacks.


-------------------------------------------------------------------------------------------------

Journal of Intelligent Computing and Health Informatics (JICHI)
ISSN 2715-6923 (print) | 2721-9186 (online)
Organized by Department of Informatics, Faculty of Engineering, Universitas Muhammadiyah Semarang, Semarang, Indonesia
Published by Universitas Muhammadiyah Semarang Press
W : https://jurnal.unimus.ac.id/index.php/ICHI
E : jichi.informatika@unimus.ac.id, ahmadilham@unimus.ac.id 
Web Analytics Made Easy - StatCounter 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.