ANALYSIS OF THE EFFECT OF HOLE GEOMETRY ON THE CATALYST ON EXHAUST GAS EMISSIONS IN MOTORCYCLE EXHAUST
(1) Universitas Singaperbangsa Karawang
(2) Universitas Singaoerbangsa Karawang
(3) Universitas Singaperbangsa Karawang
(*) Corresponding Author
Abstract
The increasing number of motorized vehicles has a direct impact on air pollution caused by vehicle exhaust gases. A catalytic converter is a tool used to reduce exhaust emissions by reducing exhaust emissions. The catalyst is the main component in the catalytic converter which functions as a reducing agent. In this study, the material used as a catalyst is brass. This study aims to determine the effect of the geometry of the catalyst on the distribution of pressure, temperature, and velocity and to determine the exhaust gas emissions that come out of the combustion chamber into the environment after adding a catalyst, as well as to compare the results of testing exhaust emissions on a standard exhaust with an exhaust that has added a catalyst. The method used in this study is the simulation method using Solidwork 2019 software and experimental testing using agass analyzer. From experimental testing, the most optimal catalyst geometry will be sought to reduce exhaust gas emission levels such as CO, HC, and CO2 levels. The result of the largest pressure distribution occurs in the geometry of list IV and the smallest average pressure occurs in the standard exhaust The largest temperature distribution occurs in the geometry of the catalyst III standard exhaust. The largest average velocity distribution occurs in the standard exhaust and the smallest on the catalyst geometry IV. The results of the experimental test the most optimal percentage reduction in exhaust emissions occurred in the geometry of the alist IV which was compared with the results of the standard exhaust test with results of CO 15.153%, HC 19.713%, and CO2 9.275%.
Keywords
Full Text:
PDFReferences
Adolf, R., Sihombing, H., Tetap, D., Stt, Y., & Medan, I. (2020). Pengaruh Jenis Aliran
Silincer Muffler Knalpot Terhadap Kebisingan Pada Sepeda Motor 125 Cc. 6(1).
Deky Sanjaya Putra. (2017). Komparasi Knalpot Standar Yamaha Vixion 2012 Dan
Knalpot Racing Nob1 Terhadap Kemampuan Reduksi Emisi Kendaraan, Suara
Dan Performa Pada Yamaha Vixion 2012. Program Studi Teknik Otomotif D3
Fakultas Teknik Universitas Negeri Yogyakarta 2017, 1–84.
Ferdnian, M. (2016). Analisis Uji Emisi Gas Buang Kendaraan Bermotor Dan
Dampaknya Terhadap Lingkungan Di Kota Balikpapan (Kal-Tim). Transmisi, Xii,
–24.
Gaikindo. (2021). Hasil Sensus Bps: Jumlah Kendaraan Bermotor Di Indonesia
Tembus 133 Juta Unit. 9 Desember 2021. https://www.gaikindo.or.id/data-bpsjumlah-kendaraan-bermotor-di-indonesia-tembus-133-juta-unit/#
Irawan, B. (2012). Rancangan Bangun Catalytic Converter Material Substrat Tembaga
Berlapis Mangan Untuk Mereduksi Gas Karbon Monoksida Motor Bensin.
Seminar Hasil-Hasil Penelitian -Lppm Unismus, 1–14.
Lapisa, R., Sugiarto, T., & Halim, A. G. (2019). Efek Geometri Pada Katalis Dalam
Penurunan Level Emisi Gas Buang Kendaraan. Jurnal Pendidikan Teknologi
Kejuruan, 2(1), 1–8. Https://Doi.Org/10.24036/Jptk.V2i1.4523
Mokhtar, A., Wibowo, T., & Malang, U. M. (2015). Catalityc Converter Jenis Katalis
Stainless Steel Berbentuk Sarang Laba-Laba Untuk Mengurangi Emisi Kendaraan
Bermotor. Rengki 2009, 978–979.
Muarif, F. R. (2017). Pengembangan Multimedia Interaktif Penggunaan Gas Analyzer
Untuk Meningkatkan Hasil Belajar. Universitas Negeri Semarang.
Muhamamd, A. (2013). Pemodelan Emisi Gas Buang Sepeda Motor.
Nasution, I. M. (2018). Konversi Energi Analisis Catalytic Converter Dengan Bahan
Tembaga Berbentuk Sarang Lebah Terhadap Emisi Gas Buang Pada Sepeda
Motor 125cc.
Nugroho, F. D. (2020). Analisis Distribusi Kecepatan, Tekanan Dan Temperatur Pada
Perancangan Saluran Gas Buang Mobil Desa Dengan Menggunakan Software
Solidworks.
Prasetyo, I., & Fahrurrozi, M. (2020). Penggunaan Catalytic Converter Dari Bahan
Kuningan Dengan Ketebalan 0,2 Mm Terhadap Emisi Gas Buang Kendaraan Pada
Motor 2 Tak. Accurate: Journal Of Mechanical Engineering And Science, 1(2), 1–
Https://Doi.Org/10.35970/Accurate.V1i2.284
Purnomo, H. (2012). Analisa Pengaruh Knalpot Knalpot Catalytic Converter Dengan
Katalis Tembaga (Cu) Berlapis Mangan (Mn) Terhadap Gas Buang Honda Supra
X 100 Cc. Jurnal Ilmiah Its, 1, 1–9.
Putra, M. (2012). Efek Perubahan Aliran Gas Buang Dalam Untuk Diterapkan Pada
Mesin Kapal Klotok 10 Hp. Universitas Indonesia.
Susilo, B. (2018). Studi Eksperimental Pengaruh Perubahan Rasio Kompresi Terhadap
Unjuk Kerja Dan Emisi Gas Buang Pada Sepeda Motor Honda Megapro 150cc
Dengan Bahan Bakar E85-Gas Hho.
Suzuki. (2021). Satria Fu 150. 9 Desember 2021
https://www.suzuki.co.id/motorcycle/all-new-satria-f150
Tjerita, K. N. (2018). METODA ELEMEN HINGGA TORSI PADA PENAMPANG
BATANG NON-CIRCULAR.
Article Metrics
Abstract view : 140 timesPDF - 18 times
DOI: https://doi.org/10.26714/traksi.22.2.2022.249-272
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 TRAKSI
This work is licensed under a Creative Commons Attribution 4.0 International License.
TRAKSI : Majalah Ilmiah Teknik Mesin
ISSN : 1693-3451 (Pinted) e-ISSN : 2579-9738 (Online)
Published by: LP2M Unimus bekerjasama dengan APTI (Asosiasi Profesi Teknik Indonesia)
Jl. Kasipah No. 12 Semarang
E-mail: [email protected] Call: 0248445768
Sponsors
Asosiasi Profesi Teknik Indonesia (APTI)
Website: www.apti.or.id