GEOGRAPHICALLY WEIGHTED REGRESSION ANALYSIS WITH ADAPTIVE GAUSSIAN IN THE SOCIAL AND ECONOMIC FIELDS FOR TUBERCULOSIS IN SOUTH SUMATRA 2020
(1) Department of Data Science, University of Insan Cita Indonesia
(2) Department of Data Science, University of Insan Cita Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Zaina, A. S. N., Pontoh, R. S., & Tantular, B. (2021, August). Pemodelan Dan Pemetaan Penyakit TB Paru di Kota Bandung Menggunakan Geographically Weighted Negative Binomial Regression: Studi Kasus Dinas Kesehatan Kota Bandung. In Prosiding Seminar Nasional Statistika Aktuaria| Departemen Statistika FMIPA Universitas Padjadjaran (Vol. 1, pp. 62-71).
Ramadhani, S. (2020). Analisis Spasial Penyebaran Penyakit Tuberkulosis di Sumatera Utara Menggunakan Indeks Moran dan Local Indicator of Spatial Association (LISA).
Azzahra, Z. (2017). Faktor-Faktor yang Mempengaruhi Kejadian Penyakit Tuberkulosis Paru di Wilayah Kerja Puskesmas Muliorejo Kecamatan Sunggal Kabupaten Deli Serdang Tahun 2017.
Larasati, Widya. (2015). TBC: Kurangnya Kesadaran Masyarakat Indonesia. https://www.kompasiana.com/widyalaras/552c0d216ea834e3388b4569/tbc-kurangnya-kesadaran-masyarakat-indonesia. Diakses pada 31 Mei 2022
Meutuah, S. M., Yasin, H., & Di Asih, I. M. (2017). Pemodelan Fixed Effect Geographically Weighted Panel Regression untuk Indeks Pembangunan Manusia di Jawa Tengah. Jurnal Gaussian, 6(2), 241-250.
Maulani, A., Herrhyanto, N., & Suherman, M. (2016). Aplikasi Model Geographically Weighted Regression (GWR) Untuk Menentukan Faktor-Faktor Yang Mempengaruhi Kasus Gizi Buruk Anak Balita Di Jawa Barat. Jurnal EurekaMatika, 4(1), 46-63.
Annabilah, Z. F., & Sutanto, H. T. (2019). Pemodelan Indeks Pembangunan Manusia di Jawa Timur Menggunakan Geographically Weighted Regression (GWR). Mathunesa: Jurnal Ilmiah Matematika, 7(1).
Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2003). Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. John Wiley & Sons.
Lumaela, A. K., Otok, B. W., & Sutikno, S. (2013). Pemodelan Chemical Oxygen Demand (COD) Sungai di Surabaya dengan Metode Mixed Geographically Weighted Regression. Jurnal Sains dan Seni ITS, 2(1), D100-D105.
Leung, Y., Mei, C. L., & Zhang, W. X. (2000). Statistical Tests for Spatial Nonstationarity Based on the Geographically Weighted Regression Model. Environment and Planning A, 32(1), 9-32.
Ramani, A. (2014). Hubungan Indeks Pembangunan Manusia Dengan Indikator Penyakit, Lingkungan, Dan Gizi Masyarakat (Analisis Data Sekunder Negara Anggota UNDP). Jurnal Ilmu Kesehatan Masyarakat, 10(1)
BPS. 2021. Sirusa Angka Harapan Hidup (AHH). Jakarta: BPS.
BPS. 2020. Kasus Penyakit menurut Kabupaten/ Kota. Sumatera Selatan: BPS.
Chasco, C., García, I., & Vicéns, J. (2007). Modeling Spatial Variations in Household Disposable Income with Geographically Weighted Regression.
Dinas Kesehatan Provinsi Sumatera Selatan. (2019). Profil Kesehatan Provinsi Sumatera Selatan. https://e-renggar.kemkes.go.id/file_performance/1-119013-2tahunan-255.pdf. Diakses pada 31 Mei 2022.
Media, Yulfira. 2011. Pengetahuan, Sikap dan Perilaku Masyarakat tentang Penyakit Tuberklosis (TB) Paru di Kecamatan Sungai Tarab, Kabupaten Tanah Datar Provinsi Sumatera Barat. Media Litbang Kesehatan,21(2):82-88.
Pierre De Bellfon, Marrie. Geographically Weighted Regression. file:///C:/Users/user/Downloads/imet131-m-chapitre-9.pdf. Diakses tanggal 31 Mei 2022, (Hal. 232-254).
Wikurendra, E. A. (2010). Faktor Faktor Yang Mempengaruhi Kejadian Tb Paru Dan Upaya Penanggulangannya. Jurnal Ekologi Kesehatan, 9(4), 1340-1346.
Article Metrics
Abstract view : 334 timesPDF - 106 times
DOI: https://doi.org/10.26714/jsunimus.11.2.2023.22-30
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Jurnal Statistika Universitas Muhammadiyah Semarang
Editorial Office:
Department of Statistics
Faculty Of Mathematics And Natural Sciences
Universitas Muhammadiyah Semarang
Jl. Kedungmundu No. 18 Semarang Indonesia
Published by:
Department of Statistics Universitas Muhammadiyah Semarang
This work is licensed under a Creative Commons Attribution 4.0 International License